28
Views
38
CrossRef citations to date
0
Altmetric
Articles

Influence of precipitation on recrystallization and texture development in an iron-1.2% copper alloy

Pages 372-380 | Published online: 18 Jul 2013

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (5)

T H Zhou, A E Gheribi & H S Zurob. (2013) Austenite particle coarsening and delta-ferrite grain growth in model Fe–Al alloy. Canadian Metallurgical Quarterly 52:1, pages 90-97.
Read now
R. K. Ray, J. J. Jonas & R. E. Hook. (1994) Cold rolling and annealing textures in low carbon and extra low carbon steels. International Materials Reviews 39:4, pages 129-172.
Read now
W. B. Hutchinson. (1984) Development and control of annealing textures in low-carbon steels. International Metals Reviews 29:1, pages 25-42.
Read now
J. O. Taylor, R. E. Smallman & B. J. Duggan. (1982) Microstructural studies of single crystals of copper–silica on annealing. Metal Science 16:9, pages 411-418.
Read now
M. Blicharski, S. Nourbakhsh & J. Nutting. (1979) Structure and properties of plastically deformed α-Ti. Metal Science 13:9, pages 516-522.
Read now

Articles from other publishers (33)

N. Dudova, R. Mishnev, A. Fedoseeva & R. Kaibyshev. (2024) On the effect of tempering temperature on the long-term creep behavior of a 10% Cr steel with low nitrogen and high boron contents. Materials Science and Engineering: A 890, pages 145912.
Crossref
Håkon W. Ånes, Antonius T.J. van Helvoort & Knut Marthinsen. (2023) Orientation dependent pinning of (sub)grains by dispersoids during recovery and recrystallization in an Al–Mn alloy. Acta Materialia 248, pages 118761.
Crossref
Håkon W. Ånes, Antonius T.J. van Helvoort & Knut Marthinsen. (2022) Correlated subgrain and particle analysis of a recovered Al Mn alloy by directly combining EBSD and backscatter electron imaging. Materials Characterization, pages 112228.
Crossref
Nadezhda Dudova. (2022) 9–12% Cr Heat-Resistant Martensitic Steels with Increased Boron and Decreased Nitrogen Contents. Metals 12:7, pages 1119.
Crossref
Jing Zhang, Kook Noh Yoon, Min Seok Kim, Hea Sang Ahn, Ji Young Kim, Zehao Li, Taisuke Sasaki, Kazuhiro Hono & Eun Soo Park. (2022) Strengthening by customizing microstructural complexity in nitrogen interstitial CoCrFeMnNi high-entropy alloys. Journal of Alloys and Compounds 901, pages 163483.
Crossref
G.W. Hu, L.C. Zeng, H. Du, Q. Wang, Z.T. Fan & X.W. Liu. (2021) Combined effects of solute drag and Zener pinning on grain growth of a NiCoCr medium-entropy alloy. Intermetallics 136, pages 107271.
Crossref
Z.Y. Zhang, L.X. Sun & N.R. Tao. (2021) Raising thermal stability of nanograins in a CuCrZr alloy by precipitates on grain boundaries. Journal of Alloys and Compounds 867, pages 159016.
Crossref
Guang Chen, Hui Wang, Hongying Sun, Yiyong Zhang, Ping Cao & Jun Wang. (2021) Effects of Nb-doping on the mechanical properties and high-temperature steam oxidation of annealing FeCrAl fuel cladding alloys. Materials Science and Engineering: A 803, pages 140500.
Crossref
Chengjun Guo, Yufan Shi, Jinshui Chen, Xiangpeng Xiao, Baixiong Liu, Jinpin Liu & Bin Yang. (2021) Effects of P addition on spinodal decomposition and discontinuous precipitation in Cu-15Ni-8Sn alloy. Materials Characterization 171, pages 110760.
Crossref
Hanlin Peng, Ling Hu, Liejun Li & Weipeng Zhang. (2020) Ripening of L12 nanoparticles and their effects on mechanical properties of Ni28Co28Fe21Cr15Al4Ti4 high-entropy alloys. Materials Science and Engineering: A 772, pages 138803.
Crossref
Dennis Edgard Jodi, Joohyun Park & Nokeun Park. (2019) Precipitate behavior in nitrogen-containing CoCrNi medium-entropy alloys. Materials Characterization 157, pages 109888.
Crossref
N. Dudova, R. Mishnev & R. Kaibyshev. (2019) Creep behavior of a 10%Cr heat-resistant martensitic steel with low nitrogen and high boron contents at 650 °C. Materials Science and Engineering: A 766, pages 138353.
Crossref
M.V. Klimova, D.G. Shaysultanov, S.V. Zherebtsov & N.D. Stepanov. (2019) Effect of second phase particles on mechanical properties and grain growth in a CoCrFeMnNi high entropy alloy. Materials Science and Engineering: A 748, pages 228-235.
Crossref
Zhiqian Sun, Philip D. Edmondson & Yukinori Yamamoto. (2018) Effects of Laves phase particles on recovery and recrystallization behaviors of Nb-containing FeCrAl alloys. Acta Materialia 144, pages 716-727.
Crossref
R. Mishnev, N. Dudova & R. Kaibyshev. (2018) On the origin of the superior long-term creep resistance of a 10% Cr steel. Materials Science and Engineering: A 713, pages 161-173.
Crossref
. 2017. Recrystallization and Related Annealing Phenomena. Recrystallization and Related Annealing Phenomena 647 681 .
R. Mishnev, N. Dudova, A. Fedoseeva & R. Kaibyshev. (2016) Microstructural aspects of superior creep resistance of a 10%Cr martensitic steel. Materials Science and Engineering: A 678, pages 178-189.
Crossref
Jun-ichi Hamada & Norihiro Kanno. (2016) Recrystallization Behavior of Cu Containing Ferritic Stainless Steel Sheet. Tetsu-to-Hagane 102:2, pages 80-88.
Crossref
Tihe Zhou, Hatem S. Zurob, Ronald J. O’Malley & Kashif Rehman. (2014) Model Fe-Al Steel with Exceptional Resistance to High Temperature Coarsening. Part I: Coarsening Mechanism and Particle Pinning Effects. Metallurgical and Materials Transactions A 46:1, pages 178-189.
Crossref
Hyung Ju Ryu, Jane Sun, Apostolos Avgeropoulos & Michael R. Bockstaller. (2014) Retardation of Grain Growth and Grain Boundary Pinning in Athermal Block Copolymer Blend Systems. Macromolecules 47:4, pages 1419-1427.
Crossref
N. Dudova, A. Plotnikova, D. Molodov, A. Belyakov & R. Kaibyshev. (2012) Structural changes of tempered martensitic 9%Cr–2%W–3%Co steel during creep at 650°C. Materials Science and Engineering: A 534, pages 632-639.
Crossref
J. Dennis, P.S. Bate & F.J. Humphreys. (2009) Abnormal grain growth in Al–3.5Cu. Acta Materialia 57:15, pages 4539-4547.
Crossref
John F. Humphreys. 2006. Materials Science and Technology. Materials Science and Technology.
Hans Erik Ekström, O.V. Mishin, Lars Östensson & Joacim Hagström. (2006) Softening of an AA3103 Alloy Analysed Using Gallium Enhanced Microscopy. Materials Science Forum 519-521, pages 1591-1596.
Crossref
Andrey Belyakov, Yuushi Sakai, Toru Hara, Yuuji Kimura & Kaneaki Tsuzaki. (2004) Recovery and Recrystallization in Cold Worked Fe – O Steels. Materials Science Forum 467-470, pages 229-234.
Crossref
. 2004. Recrystallization and Related Annealing Phenomena. Recrystallization and Related Annealing Phenomena 557 615 .
F. J. Humphreys. 2003. digital Encyclopedia of Applied Physics. digital Encyclopedia of Applied Physics.
. 1995. Recrystallization and Related Annealing Phenomena. Recrystallization and Related Annealing Phenomena 449 488 .
A.D. Rollett, D.J. Srolovitz, M.P. Anderson & R.D. Doherty. (1992) Computer simulation of recrystallization—III. Influence of a dispersion of fine particles. Acta Metallurgica et Materialia 40:12, pages 3475-3495.
Crossref
R.D. Doherty, D.J. Srolovitz, A.D. Rollett & M.P. Anderson. (1987) On the volume fraction dependence of particle limited grain growth. Scripta Metallurgica 21:5, pages 675-679.
Crossref
R. K. Ray & S. Chandra Narayanan. (1982) Combined Recrystallization and Precipitation in a Cu-9Ni-6Sn Alloy. Metallurgical Transactions A 13:4, pages 565-573.
Crossref
K. Kameno, S. Nomura & I. Kokubo. Copper Bearing High Strength Cold Rolled Steel Sheets with Superior Drawability. Copper Bearing High Strength Cold Rolled Steel Sheets with Superior Drawability.
R.K. Ray, S.Chandra Narayanan & S. Devaraj. (1980) Precipitation and recrystallisation in a Cu9Ni6Sn alloy. Scripta Metallurgica 14:11, pages 1181-1184.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.