60
Views
37
CrossRef citations to date
0
Altmetric
Articles

Hydrogen and temper embrittlement in 9Cr–1Mo steel

Pages 791-802 | Published online: 18 Jul 2013

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (6)

J. Christopher & B. K. Choudhary. (2016) Constitutive description of primary and steady-state creep deformation behaviour of tempered martensitic 9Cr–1Mo steel. Philosophical Magazine 96:21, pages 2256-2279.
Read now
B.K. Choudhary, V.S. Srinivasan & M.D. Mathew. (2011) Influence of strain rate and temperature on tensile properties of 9Cr–1Mo ferritic steel. Materials at High Temperatures 28:2, pages 155-161.
Read now
Anish Kumar, B. K. Choudhary, T. Jayakumar, K. Bhanu Sankara Rao & Baldev Raj. (2003) Characterisation of long term aging behaviour of 9Cr–1Mo ferritic steel using ultrasonic velocity. Materials Science and Technology 19:5, pages 637-641.
Read now
B.K. Choudhary, K. Bhanu Sankara Rao, S.L. Mannan & B.P. Kashyap. (1999) Serrated yielding in 9Cr–1Mo ferritic steel. Materials Science and Technology 15:7, pages 791-797.
Read now
Peter Jung. (1998) A Hydrogen Problem in Fusion Material Technology. Fusion Technology 33:1, pages 63-67.
Read now
G. R. Jordan, S. J. Andrews & C. A. Hippsley. (1993) Influence of precipitation and segregation on hydrogen embrittlement in aged 9Cr–1Mo steel. Materials Science and Technology 9:12, pages 1115-1122.
Read now

Articles from other publishers (31)

Arpan Das. (2023) Creep Fracture Complexions. Journal of Materials in Civil Engineering 35:5.
Crossref
Ting-wei Ma, Xian-chao Hao & Ping Wang. (2021) Effect of heat treatments on Charpy impact properties of 15Cr12MoVWN ferritic/martensitic steel. Journal of Iron and Steel Research International 29:3, pages 512-518.
Crossref
Alphy George, B. R. Vaishnavi Krupa, R. Mythili, Arup Dasgupta, J. Ganesh Kumar & G. V. Prasad Reddy. (2022) Contiguous hetero-structures and co-existing morphological derivatives of preferentially grown carbo-nitrides in long-term aged SS 316LN with varying nitrogen concentration. Journal of Materials Science 57:5, pages 3709-3726.
Crossref
M. Nani Babu, C. K. Mukhopadhyay & G. Sasikala. (2021) High-Temperature Fatigue Crack Growth Study of P91 Steel Using Acoustic Emission. JOM 73:12, pages 3950-3958.
Crossref
Kai Ding, Xiaohong Li, Bingge Zhao, Peng Wang, Yuming Ding, Fenggui Lu & Yulai Gao. (2020) Clarification of the false liquation crack existed in 9% Cr/CrMoV dissimilar welded joint by comparative etching process and in situ laser scanning confocal microscope. Journal of Materials Research and Technology 9:3, pages 6048-6058.
Crossref
Bimal Das & Akhilendra Singh. (2020) Influence of hydrogen on the low cycle fatigue performance of P91 steel. International Journal of Hydrogen Energy 45:11, pages 7151-7168.
Crossref
Sunil Kumar Bonagani, B. Vishwanadh, Sharma Tenneti, N. Naveen Kumar & Vivekanand Kain. (2019) Influence of tempering treatments on mechanical properties and hydrogen embrittlement of 13 wt% Cr martensitic stainless steel. International Journal of Pressure Vessels and Piping 176, pages 103969.
Crossref
T. Sakthivel, S. Panneer Selvi, P. Parameswaran & K. Laha. (2018) Influence of Thermal Ageing on Microstructure and Tensile Properties of P92 Steel. High Temperature Materials and Processes 37:5, pages 425-435.
Crossref
N. Sivai Bharasi, M. G. Pujar, C. Mallika & U. Kamachi Mudali. (2016) Corrosion and Passive Film Formation Studies on Modified 9Cr–1Mo Steel in Different Sodium Hydroxide Concentrations at Room Temperature and in Boiling Condition. Transactions of the Indian Institute of Metals 70:8, pages 1953-1963.
Crossref
Lianlian WuYoichi TakedaTetsuo ShojiMitsuo YamashitaSakae Izumi. (2017) Effect of Reversed Austenite on the Stress Corrosion Cracking of Modified 17-4PH Stainless Steel. CORROSION 73:6, pages 704-712.
Crossref
B. K. Choudhary & J. Christopher. (2016) Comparative Tensile Flow and Work-Hardening Behavior of 9 Pct Chromium Ferritic-Martensitic Steels in the Framework of the Estrin–Mecking Internal-Variable Approach. Metallurgical and Materials Transactions A 47:6, pages 2642-2655.
Crossref
B.K. Choudhary. (2013) Tertiary creep behaviour of 9Cr–1Mo ferritic steel. Materials Science and Engineering: A 585, pages 1-9.
Crossref
B.K. Choudhary. (2013) Influence of strain rate and temperature on serrated flow in 9Cr–1Mo ferritic steel. Materials Science and Engineering: A 564, pages 303-309.
Crossref
D.P. Rao Palaparti, B.K. Choudhary, E. Isaac Samuel, V.S. Srinivasan & M.D. Mathew. (2012) Influence of strain rate and temperature on tensile stress–strain and work hardening behaviour of 9Cr–1Mo ferritic steel. Materials Science and Engineering: A 538, pages 110-117.
Crossref
B. Raj & M. Vijayalakshmi. 2012. Comprehensive Nuclear Materials. Comprehensive Nuclear Materials 97 121 .
M.G. Pujar, C.R. Das, S. Thirunavukkarasu, U. Kamachi Mudali, A.K. Bhaduri, J. Brijitta & B.V.R. Tata. (2011) Effect of boron addition on pitting corrosion resistance of modified 9Cr–1Mo steel: Application of electrochemical noise. Materials Chemistry and Physics 130:1-2, pages 536-547.
Crossref
H. Shaikh, T. Anita, A. Poonguzhali, R.K. Dayal & B. Raj. 2011. Stress Corrosion Cracking. Stress Corrosion Cracking 427 484 .
Baldev Raj, S. Saroja, K. Laha, T. Karthikeyan, M. Vijayalakshmi & K. Bhanu Sankara Rao. (2009) Methods to overcome embrittlement problem in 9Cr–1Mo ferritic steel and its weldment. Journal of Materials Science 44:9, pages 2239-2246.
Crossref
V. Thomas Paul, S. Saroja & M. Vijayalakshmi. (2008) Microstructural stability of modified 9Cr–1Mo steel during long term exposures at elevated temperatures. Journal of Nuclear Materials 378:3, pages 273-281.
Crossref
S.K. Albert & S. Sundaresan. 2008. Creep-Resistant Steels. Creep-Resistant Steels 597 636 .
M. García-Mazarío, A.M. Lancha & M. Hernández-Mayoral. (2007) Embrittlement susceptibility induced by impurities segregation to grain boundaries in martensitic steels candidates to be used in ADS. Journal of Nuclear Materials 360:3, pages 293-303.
Crossref
Vibhor Chaswal, G. Sasikala, S.K. Ray, S.L. Mannan & Baldev Raj. (2005) Fatigue crack growth mechanism in aged 9Cr–1Mo steel: threshold and Paris regimes. Materials Science and Engineering: A 395:1-2, pages 251-264.
Crossref
Anders Bjärbo. (2003) Computer simulation of growth and coarsening of Laves phase in a modified 12% chromium steel. Scandinavian Journal of Metallurgy 32:2, pages 94-99.
Crossref
Marie-Françoise Maday. (2000) Phenomenological aspects of fatigue cracking in as-received and hardened F82H modified steel exposed to lithiated water with dissolved hydrogen at 240°C. Journal of Nuclear Materials 283-287, pages 689-693.
Crossref
B. K. Choudhary, S. Saroja, K. Bhanu Sankara Rao & S. L. Mannan. (1999) Creep-rupture behavior of forged, thick section 9Cr-1Mo ferritic steel. Metallurgical and Materials Transactions A 30:11, pages 2825-2834.
Crossref
B.K Choudhary, K Bhanu Sankara Rao, S.L Mannan & B.P Kashyap. (1999) Influence of prior thermal ageing on tensile deformation and fracture behaviour of forged thick section 9Cr–1Mo ferritic steel. Journal of Nuclear Materials 273:3, pages 315-325.
Crossref
L.M. Lundin. (1996) Direct measurement of carbon solubility in the intermetallic (Fe,Cr)2(Mo,W) Laves phase using atom-probe field-ion microscopy. Scripta Materialia 34:5, pages 741-747.
Crossref
Jozef Janovec, Barbara Richarz & Hans Jürgen Grabke. (1995) Some aspects of intermetallic phase precipitation in a 12% Cr-steel. Scripta Metallurgica et Materialia 33:2, pages 295-300.
Crossref
J.I. Shakib, H. Ullmaier, E.A. Little, R.G. Faulkner, W. Schmilz & T.E. Chung. (1994) Fatigue of DIN 1.4914 martensitic stainless steel in a hydrogen environment. Journal of Nuclear Materials 212-215, pages 579-583.
Crossref
R.K Singh Raman, A.S Khanna, B.K Choudhary & J.B Gnanamoorthy. (1991) Effect of thermal aging on the oxidation behaviour of 9wt.%Cr1wt.%Mo steel. Materials Science and Engineering: A 148:2, pages 299-306.
Crossref
B.K. Choudhary, K. Bhanu Sankara Rao & S.L. Mannan. (1991) High temperature low cycle fatigue properties of a thick-section 9wt.%Cr-1wt.%Mo ferritic steel forging. Materials Science and Engineering: A 148:2, pages 267-278.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.