300
Views
25
CrossRef citations to date
0
Altmetric
Original Articles

Acetobacter xylinum Mutant with High Cellulose Productivity and an Ordered Structure

, , , , , & show all
Pages 1290-1292 | Received 19 Nov 1997, Published online: 22 May 2014

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (1)

Houssni El-Saied, Altaf H. Basta & Riad H. Gobran. (2004) Research Progress in Friendly Environmental Technology for the Production of Cellulose Products (Bacterial Cellulose and Its Application). Polymer-Plastics Technology and Engineering 43:3, pages 797-820.
Read now

Articles from other publishers (24)

Xihong Liang, Wenya Hu & Jian-Jiang Zhong. (2023) Use of bacterial cellulose (BC) from a mutated strain for BC-starch composite film preparation. Process Biochemistry 131, pages 1-12.
Crossref
Bruno Leandro Pereira, Viviane Seba Sampaio, Gabriel Goetten de Lima, Carlos Maurício Lepienski, Mozart Marins, Bor Shin Chee & Michael J. D. Nugent. 2023. Polyvinyl Alcohol‐Based Biocomposites and Bionanocomposites. Polyvinyl Alcohol‐Based Biocomposites and Bionanocomposites 179 203 .
Maneesh Kumar Poddar & Pritam Kumar Dikshit. (2021) Recent development in bacterial cellulose production and synthesis of cellulose based conductive polymer nanocomposites. Nano Select 2:9, pages 1605-1628.
Crossref
Tingfen Lu, Hongliang Gao, Bowen Liao, Jiajing Wu, Wei Zhang, Jie Huang, Mingyao Liu, Jing Huang, Zhongyi Chang, Mingfei Jin, Zhengfang Yi & Deming Jiang. (2020) Characterization and optimization of production of bacterial cellulose from strain CGMCC 17276 based on whole-genome analysis. Carbohydrate Polymers 232, pages 115788.
Crossref
Woo-Chul Shin, Sayan Deb Dutta, Dinesh K. Patel & Ki-Taek Lim. 2020. Multifunctional Hybrid Nanomaterials for Sustainable Agri-Food and Ecosystems. Multifunctional Hybrid Nanomaterials for Sustainable Agri-Food and Ecosystems 537 554 .
Małgorzata Ryngajłło, Paulina Jacek, Izabela Cielecka, Halina Kalinowska & Stanisław Bielecki. (2019) Effect of ethanol supplementation on the transcriptional landscape of bionanocellulose producer Komagataeibacter xylinus E25. Applied Microbiology and Biotechnology 103:16, pages 6673-6688.
Crossref
Yukari Numata, Hiroyuki Kono, Akane Mori, Ryota Kishimoto & Kenji Tajima. (2019) Structural and rheological characterization of bacterial cellulose gels obtained from Gluconacetobacter genus. Food Hydrocolloids 92, pages 233-239.
Crossref
A.H. Bhat, Imran Khan, Mohd Amil Usmani, Reddicherla Umapathi & Salma M.Z. Al-Kindy. (2019) Cellulose an ageless renewable green nanomaterial for medical applications: An overview of ionic liquids in extraction, separation and dissolution of cellulose. International Journal of Biological Macromolecules 129, pages 750-777.
Crossref
Si-Qian Chen, Patricia Lopez-Sanchez, Dongjie Wang, Deirdre Mikkelsen & Michael J. Gidley. (2018) Mechanical properties of bacterial cellulose synthesised by diverse strains of the genus Komagataeibacter. Food Hydrocolloids 81, pages 87-95.
Crossref
Si-Qian Chen, Deirdre Mikkelsen, Patricia Lopez-Sanchez, Dongjie Wang, Marta Martinez-Sanz, Elliot P. Gilbert, Bernadine M. Flanagan & Michael J. Gidley. (2017) Characterisation of bacterial cellulose from diverse Komagataeibacter strains and their application to construct plant cell wall analogues. Cellulose 24:3, pages 1211-1226.
Crossref
Lin Fang & Jeffrey M. Catchmark. (2015) Characterization of cellulose and other exopolysaccharides produced from Gluconacetobacter strains. Carbohydrate Polymers 115, pages 663-669.
Crossref
H. P. S. Abdul Khalil, A. H. Bhat, A. Abu Bakar, Paridah Md. Tahir, I. S. M. Zaidul & M. Jawaid. 2015. Handbook of Polymer Nanocomposites. Processing, Performance and Application. Handbook of Polymer Nanocomposites. Processing, Performance and Application 475 511 .
Dianne R. Ruka, George P. Simon & Katherine M. Dean. 2014. Nanocellulose Polymer Nanocomposites. Nanocellulose Polymer Nanocomposites 89 130 .
Bhavna V. Mohite & Satish V. Patil. (2014) A novel biomaterial: bacterial cellulose and its new era applications. Biotechnology and Applied Biochemistry 61:2, pages 101-110.
Crossref
Mazhar Ul-Islam, Jung Hwan Ha, Taous Khan & Joong Kon Park. (2013) Effects of glucuronic acid oligomers on the production, structure and properties of bacterial cellulose. Carbohydrate Polymers 92:1, pages 360-366.
Crossref
Yuanjing Li, Chunjie Tian, Hua Tian, Jiliang Zhang, Xin He, Wenxiang Ping & Hong Lei. (2012) Improvement of bacterial cellulose production by manipulating the metabolic pathways in which ethanol and sodium citrate involved. Applied Microbiology and Biotechnology 96:6, pages 1479-1487.
Crossref
Johnsy George, Vallayil Appukuttan Sajeevkumar, Karna Venkata Ramana, Shanmugam Nadana Sabapathy & Siddaramaiah. (2012) Augmented properties of PVA hybrid nanocomposites containing cellulose nanocrystals and silver nanoparticles. Journal of Materials Chemistry 22:42, pages 22433.
Crossref
Jung Hwan Ha, Nasrullah Shah, Mazhar Ul-Islam, Taous Khan & Joong Kon Park. (2011) Bacterial cellulose production from a single sugar α-linked glucuronic acid-based oligosaccharide. Process Biochemistry 46:9, pages 1717-1723.
Crossref
Paula C. S. Faria Tischer, Maria Rita Sierakowski, Harry WestfahlJr.Jr. & Cesar Augusto Tischer. (2010) Nanostructural Reorganization of Bacterial Cellulose by Ultrasonic Treatment. Biomacromolecules 11:5, pages 1217-1224.
Crossref
Peng Chen, Se Youn Cho & Hyoung-Joon Jin. (2010) Modification and applications of bacterial celluloses in polymer science. Macromolecular Research 18:4, pages 309-320.
Crossref
M. Tabuchi, F. Tomita, K. Kobayashi, S. Miki, T. Saijo, A. Shibata & Y. Baba. (2006) Self-Regulated Bio-Nanostructured Membranes for MEMS. Self-Regulated Bio-Nanostructured Membranes for MEMS.
Karel Kersters, Puspita Lisdiyanti, Kazuo Komagata & Jean Swings. 2006. The Prokaryotes. The Prokaryotes 163 200 .
Toru Shigematsu, Kazunori Takamine, Masaya Kitazato, Tetsuya Morita, Takaaki Naritomi, Shigeru Morimura & Kenji Kida. (2005) Cellulose production from glucose using a glucose dehydrogenase gene (gdh)-deficient mutant of Gluconacetobacter xylinus and its use for bioconversion of sweet potato pulp. Journal of Bioscience and Bioengineering 99:4, pages 415-422.
Crossref
Stanislaw Bielecki, Alina Krystynowicz, Marianna Turkiewicz & Halina Kalinowska. 2005. Biopolymers Online. Biopolymers Online.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.