701
Views
45
CrossRef citations to date
0
Altmetric
Original Articles

Resveratrol Regulates Circadian Clock Genes in Rat-1 Fibroblast Cells

&
Pages 3038-3040 | Received 25 Jun 2008, Accepted 23 Jul 2008, Published online: 22 May 2014

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (4)

Javier Hernández-García, Diana Navas-Carrillo & Esteban Orenes-Piñero. (2020) Alterations of circadian rhythms and their impact on obesity, metabolic syndrome and cardiovascular diseases. Critical Reviews in Food Science and Nutrition 60:6, pages 1038-1047.
Read now
Tao Xu & Baiyi Lu. (2019) The effects of phytochemicals on circadian rhythm and related diseases. Critical Reviews in Food Science and Nutrition 59:6, pages 882-892.
Read now
Hideaki Oike. (2017) Modulation of circadian clocks by nutrients and food factors. Bioscience, Biotechnology, and Biochemistry 81:5, pages 863-870.
Read now
F. Pifferi, A. Rahman, S. Languille, A. Auffret, C. Babiloni, O. Blin, Y. Lamberty, J. C. Richardson & F. Aujard. (2012) Effects of Dietary Resveratrol on the Sleep-Wake Cycle in the Non-Human Primate Gray Mouse Lemur (Microcebus murinus)*. Chronobiology International 29:3, pages 261-270.
Read now

Articles from other publishers (41)

Weronika Spaleniak & Muriel Cuendet. (2023) Resveratrol as a circadian clock modulator: mechanisms of action and therapeutic applications. Molecular Biology Reports 50:7, pages 6159-6170.
Crossref
Maninder Kaur Ahluwalia. (2022) Chrononutrition—When We Eat Is of the Essence in Tackling Obesity. Nutrients 14:23, pages 5080.
Crossref
Cristina Torres‐Fuentes, Manuel Suárez, Gerard Aragonès, Miquel Mulero, Javier Ávila‐Román, Anna Arola‐Arnal, Maria Josepa Salvadó, Lluís Arola, Francisca Isabel Bravo & Begoña Muguerza. (2022) Cardioprotective Properties of Phenolic Compounds: A Role for Biological Rhythms. Molecular Nutrition & Food Research 66:21, pages 2100990.
Crossref
Jun-qing Huang, Muwen Lu & Chi-Tang Ho. (2021) Health benefits of dietary chronobiotics: beyond resynchronizing internal clocks. Food & Function 12:14, pages 6136-6156.
Crossref
Javier Ávila-Román, Jorge R. Soliz-Rueda, Francisca Isabel Bravo, Gerard Aragonès, Manuel Suárez, Anna Arola-Arnal, Miquel Mulero, Maria-Josepa Salvadó, Lluís Arola, Cristina Torres-Fuentes & Begoña Muguerza. (2021) Phenolic compounds and biological rhythms: Who takes the lead?. Trends in Food Science & Technology 113, pages 77-85.
Crossref
Megha Jhanji, Chintada Nageswara Rao & Mathew Sajish. (2020) Towards resolving the enigma of the dichotomy of resveratrol: cis- and trans-resveratrol have opposite effects on TyrRS-regulated PARP1 activation. GeroScience 43:3, pages 1171-1200.
Crossref
Jun Hyeok Kim, Laura J. Bell, Xiao Wang, Rinuckshi Wimalasekera, Hugo P. Bastos, Krystyna A. Kelly, Matthew A. Hannah & Alex A. R. Webb. (2021) Arabidopsis sirtuins and poly( ADP ‐ribose) polymerases regulate gene expression in the day but do not affect circadian rhythms . Plant, Cell & Environment 44:5, pages 1451-1467.
Crossref
Huijun Cheng, Zenghui Liu, Guohuo Wu, Chi-Tang Ho, Daxiang Li & Zhongwen Xie. (2021) Dietary compounds regulating the mammal peripheral circadian rhythms and modulating metabolic outcomes. Journal of Functional Foods 78, pages 104370.
Crossref
Hideaki OIKE. (2021) Chrono-Nutritional Studies to Control Circadian Rhythms: Modulation of Circadian Clocks by Food Factors時間栄養学によるサーカディアンリズム制御. KAGAKU TO SEIBUTSU 59:2, pages 75-83.
Crossref
Chihiro Suzuki, Satoshi Fukumitsu & Hideaki Oike. (2021) Modulation of cellular circadian clocks by triterpenoids. Phytochemistry 181, pages 112539.
Crossref
Damiano Galimberti & Giuseppe Mazzola. 2021. Human Aging. Human Aging 219 254 .
Kalina Duszka & Walter Wahli. (2020) Peroxisome Proliferator-Activated Receptors as Molecular Links between Caloric Restriction and Circadian Rhythm. Nutrients 12:11, pages 3476.
Crossref
Yang Liu, Hedong Lang, Min Zhou, Li Huang, Suocheng Hui, Xiaolan Wang, Ka Chen & Mantian Mi. (2020) The Preventive Effects of Pterostilbene on the Exercise Intolerance and Circadian Misalignment of Mice Subjected to Sleep Restriction. Molecular Nutrition & Food Research 64:11, pages 1900991.
Crossref
Andy W.C. Man, Ning Xia, Andreas Daiber & Huige Li. (2019) The roles of gut microbiota and circadian rhythm in the cardiovascular protective effects of polyphenols. British Journal of Pharmacology 177:6, pages 1278-1293.
Crossref
Yoshinori Okada & Mizue Okada. (2019) Quercetin, caffeic acid and resveratrol regulate circadian clock genes and aging-related genes in young and old human lung fibroblast cells. Molecular Biology Reports 47:2, pages 1021-1032.
Crossref
Ken-yu Hironao, Yuji Mitsuhashi, Shujiao Huang, Hideaki OikeHitoshi Ashida & Yoko Yamashita. (2020) Cacao polyphenols regulate the circadian clock gene expression and through glucagon-like peptide-1 secretion. Journal of Clinical Biochemistry and Nutrition 67:1, pages 53-60.
Crossref
Shinobu Yasuo. 2020. Neurological Modulation of Sleep. Neurological Modulation of Sleep 375 383 .
Anita Jagota, Kowshik Kukkemane & Neelesh Babu Thummadi. 2020. Models, Molecules and Mechanisms in Biogerontology. Models, Molecules and Mechanisms in Biogerontology 443 463 .
Karen F. Chambers, Priscilla E. Day, Hassan T. Aboufarrag & Paul A. Kroon. (2019) Polyphenol Effects on Cholesterol Metabolism via Bile Acid Biosynthesis, CYP7A1: A Review. Nutrients 11:11, pages 2588.
Crossref
Clara Hozer, Fabien Pifferi, Fabienne Aujard & Martine Perret. (2019) The Biological Clock in Gray Mouse Lemur: Adaptive, Evolutionary and Aging Considerations in an Emerging Non-human Primate Model. Frontiers in Physiology 10.
Crossref
Xintong Tan, Ling Li, Jia Wang, Beita Zhao, Junru Pan, Leran Wang, Xiao Liu, Xuebo Liu & Zhigang Liu. (2019) Resveratrol Prevents Acrylamide-Induced Mitochondrial Dysfunction and Inflammatory Responses via Targeting Circadian Regulator Bmal1 and Cry1 in Hepatocytes. Journal of Agricultural and Food Chemistry 67:31, pages 8510-8519.
Crossref
Kowshik Kukkemane & Anita Jagota. (2019) Therapeutic effects of curcumin on age-induced alterations in daily rhythms of clock genes and Sirt1 expression in the SCN of male Wistar rats. Biogerontology 20:4, pages 405-419.
Crossref
Essra Noorwali, Laura Hardie & Janet Cade. (2019) Bridging the Reciprocal Gap between Sleep and Fruit and Vegetable Consumption: A Review of the Evidence, Potential Mechanisms, Implications, and Directions for Future Work. Nutrients 11:6, pages 1382.
Crossref
Takayuki Yamamoto, Shiho Iwami, Shinya Aoyama, Hiroko Maruki-Uchida, Sadao Mori, Rina Hirooka, Kengo Takahashi, Minoru Morita & Shigenobu Shibata. (2019) Effect of piceatannol on circadian Per2 expression in vitro and in vivo. Journal of Functional Foods 56, pages 49-56.
Crossref
Anita Jagota, Neelesh Babu Thummadi & Kowshik Kukkemane. 2019. The Science of Hormesis in Health and Longevity. The Science of Hormesis in Health and Longevity 223 233 .
Amol Chaudhari, Richa Gupta, Kuldeep Makwana & Roman Kondratov. (2017) Circadian clocks, diets and aging. Nutrition and Healthy Aging 4:2, pages 101-112.
Crossref
Gabrielle F. Gloston, Seung-Hee Yoo & Zheng (Jake) Chen. (2017) Clock-Enhancing Small Molecules and Potential Applications in Chronic Diseases and Aging. Frontiers in Neurology 8.
Crossref
Ayako Shinozaki, Kenichiro Misawa, Yuko Ikeda, Atsushi Haraguchi, Mayo Kamagata, Yu Tahara & Shigenobu Shibata. (2017) Potent Effects of Flavonoid Nobiletin on Amplitude, Period, and Phase of the Circadian Clock Rhythm in PER2::LUCIFERASE Mouse Embryonic Fibroblasts. PLOS ONE 12:2, pages e0170904.
Crossref
Michael G. Gray, Brett R. Lackey, Evelyn F. Patrick, Sandra L. Gray & Susan G. Hurley. (2016) Multiple Integrated Complementary Healing Approaches: Energetics & Light for bone. Medical Hypotheses 86, pages 18-29.
Crossref
Aleix Ribas-Latre, Laura Baselga-Escudero, Ester Casanova, Anna Arola-Arnal, M-Josepa Salvadó, Cinta Bladé & Lluís Arola. (2015) Dietary proanthocyanidins modulate BMAL1 acetylation, Nampt expression and NAD levels in rat liver. Scientific Reports 5:1.
Crossref
Aleix Ribas-Latre, Josep M. Del Bas, Laura Baselga-Escudero, Ester Casanova, Anna Arola-Arnal, Maria-Josepa Salvadó, Lluís Arola & Cinta Bladé. (2015) Dietary proanthocyanidins modulate melatonin levels in plasma and the expression pattern of clock genes in the hypothalamus of rats. Molecular Nutrition & Food Research 59:5, pages 865-878.
Crossref
A. Ribas-Latre, L. Baselga-Escudero, E. Casanova, A. Arola-Arnal, M.J. Salvadó, L. Arola & C. Bladé. (2015) Chronic consumption of dietary proanthocyanidins modulates peripheral clocks in healthy and obese rats. The Journal of Nutritional Biochemistry 26:2, pages 112-119.
Crossref
Linjie Sun, Yan Wang, Yu Song, Xiang-Rong Cheng, Shufang Xia, Md Ramim Tanver Rahman, Yonghui Shi & Guowei Le. (2015) Resveratrol restores the circadian rhythmic disorder of lipid metabolism induced by high-fat diet in mice. Biochemical and Biophysical Research Communications 458:1, pages 86-91.
Crossref
Hideaki Oike, Katsutaka Oishi & Masuko Kobori. (2014) Nutrients, Clock Genes, and Chrononutrition. Current Nutrition Reports 3:3, pages 204-212.
Crossref
Clara Gabás-Rivera, Roberto Martínez-Beamonte, José L. Ríos, María A. Navarro, Joaquín C. Surra, Carmen Arnal, María J. Rodríguez-Yoldi & Jesús Osada. (2013) Dietary oleanolic acid mediates circadian clock gene expression in liver independently of diet and animal model but requires apolipoprotein A1. The Journal of Nutritional Biochemistry 24:12, pages 2100-2109.
Crossref
Jonatan Miranda, María P. Portillo, Juan Antonio Madrid, Noemí Arias, M. Terasa Macarulla & Marta Garaulet. (2013) Effects of resveratrol on changes induced by high-fat feeding on clock genes in rats. British Journal of Nutrition 110:8, pages 1421-1428.
Crossref
Takashi Tsurusaki, Hiroyuki Sakakibara, Yoshiki Aoshima, Shunsuke Yamazaki, Masanobu Sakono & Kayoko Shimoi. (2013) Diurnal rhythmicity in biological processes involved in bioavailability of functional food factors. Journal of Clinical Biochemistry and Nutrition 52:3, pages 208-214.
Crossref
Fabien Pifferi, Alexandre Dal-Pan, Solène Languille & Fabienne Aujard. (2013) Effects of Resveratrol on Daily Rhythms of Locomotor Activity and Body Temperature in Young and Aged Grey Mouse Lemurs. Oxidative Medicine and Cellular Longevity 2013, pages 1-7.
Crossref
Yasuo Kagawa. (2012) From clock genes to telomeres in the regulation of the healthspan. Nutrition Reviews 70:8, pages 459-471.
Crossref
Fabien Pifferi, Alexandre Dal-Pan, Michael Menaker & Fabienne Aujard. (2011) Resveratrol Dietary Supplementation Shortens the Free-Running Circadian Period and Decreases Body Temperature in a Prosimian Primate. Journal of Biological Rhythms 26:3, pages 271-275.
Crossref
Hideaki OIKE. (2009) . KAGAKU TO SEIBUTSU 47:10, pages 666-668.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.