22
Views
26
CrossRef citations to date
0
Altmetric
Technical Paper

Experimental Study of the Effect of External Pressure on Particle Bed Effective Thermal Properties

&
Pages 298-313 | Published online: 09 May 2017

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (4)

A. Abou-Sena, A. Ying & M. Abdou. (2009) Experimental Measurements of the Interface Thermal Conductance of a Lithium Metatitanate Pebble Bed. Fusion Science and Technology 56:1, pages 206-210.
Read now
T. Hatano, M. Enoeda, S. Suzuki, Y. Kosaku & M. Akiba. (2003) Effective Thermal Conductivity of a Li2TiO3 Pebble Bed for a DEMO Blanket. Fusion Science and Technology 44:1, pages 94-98.
Read now
A. Abou-Sena, A. Ying & M. Abdou. (2003) Experimental Investigation and Analysis of the Effective Thermal Properties of Beryllium Packed Beds. Fusion Science and Technology 44:1, pages 79-84.
Read now
Mikio Enoeda, Kazuyuki Furuya, Hideyuki Takatsu, Shigeto Kikuchi & Toshihisa Hatano. (1998) Effective Thermal Conductivity Measurements of the Binary Pebble Beds by Hot Wire Method for the Breeding Blanket. Fusion Technology 34:3P2, pages 877-881.
Read now

Articles from other publishers (22)

Wenbin Fei, Xianze Cui & Guillermo A. Narsilio. (2023) Evolution of stress-induced thermal anisotropy in granular materials: A directed network perspective. Powder Technology 415, pages 118087.
Crossref
Maulik Panchal, Vrushabh Lambade, Vimal Kanpariya, Harsh Patel & Paritosh Chaudhuri. (2021) Measurement of effective thermal conductivity of lithium metatitanate pebble beds by steady-state radial heat flow method. Fusion Engineering and Design 172, pages 112854.
Crossref
Shengyao Jiang, Jiyuan Tu, Xingtuan Yang & Nan GuiShengyao Jiang, Jiyuan Tu, Xingtuan Yang & Nan Gui. 2021. Multiphase Flow and Heat Transfer in Pebble Bed Reactor Core. Multiphase Flow and Heat Transfer in Pebble Bed Reactor Core 1 42 .
Stephen E. Wood. (2020) A mechanistic model for the thermal conductivity of planetary regolith: 1. The effects of particle shape, composition, cohesion, and compression at depth. Icarus 352, pages 113964.
Crossref
Raghuram Karthik Desu, Akhil Reddy Peeketi & Ratna Kumar Annabattula. (2020) Influence of bed conditions on the effective thermal conductivity of ceramic breeder pebble beds using thermal DEM (TDEM). Fusion Engineering and Design 159, pages 111767.
Crossref
Akhil Reddy Peeketi, Marigrazia Moscardini, Simone Pupeschi, Yixiang Gan, Marc Kamlah & Ratna Kumar Annabattula. (2019) Analytical estimation of the effective thermal conductivity of a granular bed in a stagnant gas including the Smoluchowski effect. Granular Matter 21:4.
Crossref
Shengyao Jiang, Jiyuan Tu, Xingtuan Yang & Nan Gui. (2019) A review of pebble flow study for pebble bed high temperature gas-cooled reactor. Experimental and Computational Multiphase Flow 1:3, pages 159-176.
Crossref
Jingwen Mo & Heng Ban. (2017) Measurements and theoretical modeling of effective thermal conductivity of particle beds under compression in air and vacuum. Case Studies in Thermal Engineering 10, pages 423-433.
Crossref
Weijing Dai & Yixiang Gan. (2017) Measurement of effective thermal conductivity of compacted granular media by the transient plane source technique. EPJ Web of Conferences 140, pages 02016.
Crossref
Jingwen Mo, Daniel Garrett & Heng Ban. (2015) Anisotropic Effective Thermal Conductivity of Particle Beds Under Uniaxial Compression. International Journal of Thermophysics 36:10-11, pages 2621-2637.
Crossref
Rosa Lo Frano, Donato Aquaro, Simone Pupeschi & Marigrazia Moscardini. (2014) Thermo-mechanical test rig for experimental evaluation of thermal conductivity of ceramic pebble beds. Fusion Engineering and Design 89:7-8, pages 1309-1313.
Crossref
D Aquaro & R Lo Frano. (2014) Preliminary experimental evaluation of thermal conductivity of ceramic pebble beds. Journal of Physics: Conference Series 501, pages 012031.
Crossref
Andrey M. Abyzov, Andrey V. Goryunov & Fedor M. Shakhov. (2014) Effective thermal conductivity of disperse materials. II. Effect of external load. International Journal of Heat and Mass Transfer 70, pages 1121-1136.
Crossref
Daniel Garrett & Heng Ban. (2011) Compressive pressure dependent anisotropic effective thermal conductivity of granular beds. Granular Matter 13:5, pages 685-696.
Crossref
Yixiang Gan & Marc Kamlah. (2010) Thermo-mechanical modelling of pebble bed–wall interfaces. Fusion Engineering and Design 85:1, pages 24-32.
Crossref
J. Reimann, G. Piazza & H. Harsch. (2006) Thermal conductivity of compressed beryllium pebble beds. Fusion Engineering and Design 81:1-7, pages 449-454.
Crossref
Galit Weidenfeld, Yeshayahu Weiss & Haim Kalman. (2004) A theoretical model for effective thermal conductivity (ETC) of particulate beds under compression. Granular Matter 6:2-3, pages 121-129.
Crossref
G. Widenfeld, Y. Weiss & H. Kalman. (2003) The effect of compression and preconsolidation on the effective thermal conductivity of particulate beds. Powder Technology 133:1-3, pages 15-22.
Crossref
J Reimann, L Boccaccini, M Enoeda & A.Y Ying. (2002) Thermomechanics of solid breeder and Be pebble bed materials. Fusion Engineering and Design 61-62, pages 319-331.
Crossref
J Reimann & S Hermsmeyer. (2002) Thermal conductivity of compressed ceramic breeder pebble beds. Fusion Engineering and Design 61-62, pages 345-351.
Crossref
Shigeto Kikuchi. (2001) Numerical analysis model for thermal conductivities of packed beds with high solid-to-gas conductivity ratio. International Journal of Heat and Mass Transfer 44:6, pages 1213-1221.
Crossref
F. Scaffidi-Argentina, G.R. Longhurst, V. Shestakov & H. Kawamura. (2000) Beryllium R&D for fusion applications. Fusion Engineering and Design 51-52, pages 23-41.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.