119
Views
32
CrossRef citations to date
0
Altmetric
Technical Paper

Multiple-Reheat Brayton Cycles for Nuclear Power Conversion with Molten Coolants

Pages 279-288 | Published online: 10 Apr 2017

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (10)

Jan Emblemsvåg. (2022) Safe, clean, proliferation resistant and cost-effective Thorium-based Molten Salt Reactors for sustainable development. International Journal of Sustainable Energy 41:6, pages 514-537.
Read now
S. K. Tyagi. (2010) Optimum criteria based on different pressure ratios of an irreversible intercooled-regenerative-reheat Brayton cycle. International Journal of Sustainable Energy 29:4, pages 191-210.
Read now
W.R. Meier, R. Abbott, R. Beach, J. Blink, J. Caird, A. Erlandson, J. Farmer, W. Halsey, T. Ladran, J. Latkowski, A. MacIntyre, R. Miles & E. Storm. (2009) Systems Modeling for the Laser Fusion-Fission Energy (LIFE) Power Plant. Fusion Science and Technology 56:2, pages 647-651.
Read now
Haihua Zhao & Per F. Peterson. (2007) Optimization of Advanced High-Temperature Brayton Cycles with Multiple-Reheat Stages. Nuclear Technology 158:2, pages 145-157.
Read now
Vaclav Dostal, Pavel Hejzlar & Michael J. Driscoll. (2006) The Supercritical Carbon Dioxide Power Cycle: Comparison to Other Advanced Power Cycles. Nuclear Technology 154:3, pages 283-301.
Read now
Ralph W. Moir & Edward Teller. (2005) Thorium-Fueled Underground Power Plant Based on Molten Salt Technology. Nuclear Technology 151:3, pages 334-340.
Read now
A. R. Raffray, S. Malang, L. El-Guebaly & X. Wang. (2005) Ceramic Breeder Blanket for ARIES-CS. Fusion Science and Technology 47:4, pages 1068-1073.
Read now
C.P.C. Wong, S. Malang, M Sawan, S. Smolentsev, S. Majumdar, B. Merrill, D. K. Sze, N. Morley, S Sharafat, M. Dagher, P. Peterson, H Zhao, S. J. Zinkle, M. Abdou & M Youssef. (2005) Assessment of First Wall and Blanket Options with the Use of Liquid Breeder. Fusion Science and Technology 47:3, pages 502-509.
Read now
Haihua Zhao, Grant Fukuda, Ryan P. Abbott & Per F. Peterson. (2005) Optimized Helium-Brayton Power Conversion for Fusion Energy Systems. Fusion Science and Technology 47:3, pages 460-466.
Read now
Charles W. Forsberg, Per F. Peterson & Paul S. Pickard. (2003) Molten-Salt-Cooled Advanced High-Temperature Reactor for Production of Hydrogen and Electricity. Nuclear Technology 144:3, pages 289-302.
Read now

Articles from other publishers (22)

Simiao Tang, Qiang Lian, Longxiang Zhu, Luteng Zhang, Zaiyong Ma, Wan Sun & Liangming Pan. (2024) Thermal-electrical coupling analysis of the static heat pipe cooled reactor under heat pipe failure condition. Nuclear Engineering and Design 417, pages 112812.
Crossref
Xiao Luo, Yifei Teng, Daogang Lu, Danting Sui, Hao Ding, Lu Zhang & Yang Liu. (2023) Comparative analysis on high-efficiency energy conversion system with different working mediums matched with small lead-cooled fast reactor. Progress in Nuclear Energy 164, pages 104844.
Crossref
Juwei Lou, Jiangfeng Wang, Jiaxi Xia, Yang Du, Pan Zhao & Guolutiao Zhang. (2022) Thermodynamic analysis of open-air Brayton cycle to predict radial turbine aerodynamic performance. Applied Thermal Engineering, pages 119411.
Crossref
Robin Roper, Megan Harkema, Piyush Sabharwall, Catherine Riddle, Brandon Chisholm, Brandon Day & Paul Marotta. (2022) Molten salt for advanced energy applications: A review. Annals of Nuclear Energy 169, pages 108924.
Crossref
Donny Nurmayady. Thermal efficiency modelling for HTGR GT 10 MWth. Thermal efficiency modelling for HTGR GT 10 MWth.
Jan Emblemsvåg. (2021) How Thorium-Based Molten Salt Reactors Can Provide Clean, Safe, and Cost-Effective Technology for Deep-Sea Shipping. Marine Technology Society Journal 55:1, pages 56-72.
Crossref
Bahman Zohuri. 2021. Molten Salt Reactors and Integrated Molten Salt Reactors. Molten Salt Reactors and Integrated Molten Salt Reactors 171 196 .
Jeffery B. GreenblattNicholas R. Brown, Rachel Slaybaugh, Theresa Wilks, Emma Stewart & Sean T. McCoy. (2017) The Future of Low-Carbon Electricity. Annual Review of Environment and Resources 42:1, pages 289-316.
Crossref
Seok Bin Seo, Han Seo & In Cheol Bang. (2016) Adoption of nitrogen power conversion system for small scale ultra-long cycle fast reactor eliminating intermediate sodium loop. Annals of Nuclear Energy 87, pages 621-629.
Crossref
Charalampos Andreades, Raluca O. Scarlat, Lindsay Dempsey & Per Peterson. (2014) Reheat-Air Brayton Combined Cycle Power Conversion Design and Performance Under Nominal Ambient Conditions. Journal of Engineering for Gas Turbines and Power 136:6.
Crossref
G.D. Pérez-Pichel, J.I. Linares, L.E. Herranz & B.Y. Moratilla. (2011) Potential application of Rankine and He-Brayton cycles to sodium fast reactors. Nuclear Engineering and Design 241:8, pages 2643-2652.
Crossref
Dezhong Huang & Fuer Wu. (2011) Research of Closed Brayton Cycle Solar Thermal Power System. Research of Closed Brayton Cycle Solar Thermal Power System.
Haihua Zhao, Hongbin Zhang, Vincent A. Mousseau & Per F. Peterson. (2009) Improving SFR economics through innovations from thermal design and analysis aspects. Nuclear Engineering and Design 239:6, pages 1042-1055.
Crossref
. 2009. Energy Resources and Systems. Energy Resources and Systems 89 140 .
Haihua Zhao & Per F. Peterson. (2008) Multiple reheat helium Brayton cycles for sodium cooled fast reactors. Nuclear Engineering and Design 238:7, pages 1535-1546.
Crossref
Charles W. Forsberg, Per F. Peterson & Haihua Zhao. (2007) High-Temperature Liquid-Fluoride-Salt Closed-Brayton-Cycle Solar Power Towers. Journal of Solar Energy Engineering 129:2, pages 141-146.
Crossref
C. W. ForsbergP. F. PetersonH. Zhao. (2006) Sustainability and Economics of the Advanced High-Temperature Reactor. Journal of Energy Engineering 132:3, pages 109-115.
Crossref
C.p.c. Wong, M. Abdou, S. Malang, M. Sawan, M. Dagher, S. Smolentsev, B. Merrill, M. Youssef, S. Sharafat, P. Calderoni, G. Sviatoslavsky, D.k. Sze, N.B. Morley, R. Kurtz, S. Willms, D.P. Carosella, M.P. Labar, P. Fogarty, M. Ulrickson & S. Zinkle. (2006) Overview of the US ITER Dual Coolant Lead Lithium (DCLL) Test Blanket Module Program. Overview of the US ITER Dual Coolant Lead Lithium (DCLL) Test Blanket Module Program.
C.P.C. Wong, S. Malang, M. Sawan, M. Dagher, S. Smolentsev, B. Merrill, M. Youssef, S. Reyes, D.K. Sze, N.B. Morley, S. Sharafat, P. Calderoni, G. Sviatoslavsky, R. Kurtz, P. Fogarty, S. Zinkle & M. Abdou. (2006) An overview of dual coolant Pb–17Li breeder first wall and blanket concept development for the US ITER-TBM design. Fusion Engineering and Design 81:1-7, pages 461-467.
Crossref
Michio YAMAWAKI, Hajimu YAMANA, Hironobu UNESAKI & Kosaku FUKUDA. (2005) Recent Research Trends of Thorium Fuel Cycleトリウム燃料サイクルの研究開発と動向. Journal of the Atomic Energy Society of Japan / Atomic Energy Society of Japan 47:12, pages 802-821.
Crossref
C.P.C. Wong, S. Malang, M. Sawan, I. Sviatoslavsky, E. Mogahed, S. Smolentsev, S. Majumdar, B. Merrill, R. Mattas, M. Friend, J. Bolin & S. Sharafat. (2004) Molten salt self-cooled solid first wall and blanket design based on advanced ferritic steel. Fusion Engineering and Design 72:1-3, pages 245-275.
Crossref
C.P.C Wong, S Malang, M Sawan, I Sviatoslavsky, E Mogahed, S Smolentsev, S Majumdar, B Merrill, R Mattas, M Friend, J Bolin & S Sharafat. (2004) APEX advanced ferritic steel, Flibe self-cooled first wall and blanket design. Journal of Nuclear Materials 329-333, pages 1599-1604.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.