78
Views
20
CrossRef citations to date
0
Altmetric
Original Research

Comparative effects of magnetic and water-based hyperthermia treatments on human osteosarcoma cells

, , , , &
Pages 5743-5751 | Published online: 25 Sep 2018

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (1)

Mostafa Yusefi, Kamyar Shameli, Hossein Jahangirian, Sin-Yeang Teow, Leili Afsah-Hejri, Siti Nur Amalina Mohamad Sukri & Kamil Kuča. (2023) How Magnetic Composites are Effective Anticancer Therapeutics? A Comprehensive Review of the Literature. International Journal of Nanomedicine 18, pages 3535-3575.
Read now

Articles from other publishers (19)

Jorge L Castro-Torres, Janet Méndez, Madeline Torres-Lugo & Eduardo Juan. (2023) Development of handheld induction heaters for magnetic fluid hyperthermia applications and in-vitro evaluation on ovarian and prostate cancer cell lines. Biomedical Physics & Engineering Express 9:3, pages 035010.
Crossref
Soodeh Naderi, Mohammad Reza Salehi, Louiza Dehyadegari, Mohammad Salehi & Ebrahim Abiri. (2023) Three-dimensional model for skin tumor using plasmonic nanoparticles distribution and tissue optical clearing. Optical and Quantum Electronics 55:5.
Crossref
Dumitru Daniel Herea, Camelia-Mihaela Zară-Dănceanu, Luminița Lăbușcă, Anca-Emanuela Minuti, Cristina Stavilă, Gabriel Ababei, Mihai Tibu, Marian Grigoraș, Mihaela Lostun, George Stoian, Oana-Georgiana Dragoș-Pînzaru, Gabriela Buema, Horia Chiriac & Nicoleta Lupu. (2023) Enhanced Multimodal Effect of Chemotherapy, Hyperthermia and Magneto-Mechanic Actuation of Silver-Coated Magnetite on Cancer Cells. Coatings 13:2, pages 406.
Crossref
Huanhuan Lv, Jiancheng Yang & Yanru Xue. 2023. Biological Effects of Static Magnetic Fields. Biological Effects of Static Magnetic Fields 321 336 .
Zilin Zhang, Nan Zhang, Xiaofang Li, Guangda Li, Kaili Zhang, Aihua Jing, Jinghua Li & Hui Tang. (2022) Porous magnetic Fe3O4/bioactive glass–ceramic (CaO-SiO2-P2O5-MgO) scaffold with enhanced self-heating ability for hyperthermia treatment of bone tumor—an in vitro study. Journal of the Australian Ceramic Society 58:5, pages 1729-1745.
Crossref
Shenghang Wang, Ting Huyan, Chenge Lou, Peng Shang & Hao Zhang. (2022) 12 T high static magnetic field suppresses osteosarcoma cells proliferation by regulating intracellular ROS and iron status. Experimental Cell Research 417:2, pages 113223.
Crossref
Anca Emanuela Minuti, George Stoian, Dumitru-Daniel Herea, Ecaterina Radu, Nicoleta Lupu & Horia Chiriac. (2022) Fe-Cr-Nb-B Ferrofluid for Biomedical Applications. Nanomaterials 12:9, pages 1488.
Crossref
Bo‐Wei Chen, Shadie Hatamie, Hsin‐Cheng Chiu, Zung‐Hang Wei, Shang‐Hsiu Hu & Da‐Jeng Yao. (2022) Shape‐Mediated Magnetocrystalline Anisotropy and Relaxation Controls by Cobalt Ferrite Core–Shell Heterostructures for Magnetothermal Penetration Delivery. Advanced Materials Interfaces 9:12.
Crossref
Tao Guo, Ran Wei, Dylan C. Dean, Francis J. Hornicek & Zhenfeng Duan. (2022) SMARCB1 expression is a novel diagnostic and prognostic biomarker for osteosarcoma. Bioscience Reports 42:1.
Crossref
Faraz Chamani, India Barnett, Marla Pyle, Tej Shrestha & Punit Prakash. (2022) A Review of In Vitro Instrumentation Platforms for Evaluating Thermal Therapies in Experimental Cell Culture Models. Critical Reviews in Biomedical Engineering 50:2, pages 39-67.
Crossref
Izaz Raouf, Piotr Gas & Heung Soo Kim. (2021) Numerical Investigation of Ferrofluid Preparation during In-Vitro Culture of Cancer Therapy for Magnetic Nanoparticle Hyperthermia. Sensors 21:16, pages 5545.
Crossref
Mohamed F. Sanad, Bianca P. Meneses-Brassea, Dawn S. Blazer, Shirin Pourmiri, George C. Hadjipanayis & Ahmed A. El-Gendy. (2021) Superparamagnetic Fe/Au Nanoparticles and Their Feasibility for Magnetic Hyperthermia. Applied Sciences 11:14, pages 6637.
Crossref
Bo-Wei Chen, Guo-Wei Chiu, Yun-Chi He, Chih-Yu Huang, Hao-Ting Huang, Shian-Ying Sung, Chia-Ling Hsieh, Wei-Chieh Chang, Ming-Shinn Hsu, Zung-Hang Wei & Da-Jeng Yao. (2021) Extracellular and intracellular intermittent magnetic-fluid hyperthermia treatment of SK-Hep1 hepatocellular carcinoma cells based on magnetic nanoparticles coated with polystyrene sulfonic acid. PLOS ONE 16:2, pages e0245286.
Crossref
Aylar Najafipour, Ali Gharieh, Afshin Fassihi, Hojjat Sadeghi-Aliabadi & Ali Reza Mahdavian. (2020) MTX-Loaded Dual Thermoresponsive and pH-Responsive Magnetic Hydrogel Nanocomposite Particles for Combined Controlled Drug Delivery and Hyperthermia Therapy of Cancer. Molecular Pharmaceutics 18:1, pages 275-284.
Crossref
Grace Brennan, Silvia Bergamino, Martina Pescio, Syed A. M. Tofail & Christophe Silien. (2020) The Effects of a Varied Gold Shell Thickness on Iron Oxide Nanoparticle Cores in Magnetic Manipulation, T1 and T2 MRI Contrasting, and Magnetic Hyperthermia. Nanomaterials 10:12, pages 2424.
Crossref
Zhila Shaterabadi, Gholamreza Nabiyouni & Meysam Soleymani. (2020) Correlation between effects of the particle size and magnetic field strength on the magnetic hyperthermia efficiency of dextran-coated magnetite nanoparticles. Materials Science and Engineering: C 117, pages 111274.
Crossref
Vânia Vilas-Boas, Félix Carvalho & Begoña Espiña. (2020) Magnetic Hyperthermia for Cancer Treatment: Main Parameters Affecting the Outcome of In Vitro and In Vivo Studies. Molecules 25:12, pages 2874.
Crossref
Luminita Labusca, Dumitru-Daniel Herea, Camelia-Mihaela Danceanu, Anca Emanuela Minuti, Cristina Stavila, Marian Grigoras, Daniel Gherca, George Stoian, Gabriel Ababei, Horia Chiriac & Nicoleta Lupu. (2020) The effect of magnetic field exposure on differentiation of magnetite nanoparticle-loaded adipose-derived stem cells. Materials Science and Engineering: C 109, pages 110652.
Crossref
Ruby Gupta & Deepika Sharma. (2019) Evolution of Magnetic Hyperthermia for Glioblastoma Multiforme Therapy. ACS Chemical Neuroscience 10:3, pages 1157-1172.
Crossref