86
Views
38
CrossRef citations to date
0
Altmetric
Original Research

Fabrication and characterization of nuclear localization signal-conjugated glycol chitosan micelles for improving the nuclear delivery of doxorubicin

, , , , , , & show all
Pages 5079-5090 | Published online: 21 Sep 2012

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (4)

Xu-Feng Wang, Jin Ren, Hai-Qing He, Liang Liang, Xin Xie, Zi-Xin Li, Jian-Guo Zhao & Jing-Mou Yu. (2019) Self-assembled nanoparticles of reduction-sensitive poly (lactic-co-glycolic acid)-conjugated chondroitin sulfate A for doxorubicin delivery: preparation, characterization and evaluation. Pharmaceutical Development and Technology 24:6, pages 794-802.
Read now
Qi Sun, Xiaoli Wang, Chunying Cui, Jing Li & Yifan Wang. (2018) Doxorubicin and anti-VEGF siRNA co-delivery via nano-graphene oxide for enhanced cancer therapy in vitro and in vivo. International Journal of Nanomedicine 13, pages 3713-3728.
Read now
Jingmou Yu, Yonghua Liu, Lei Zhang, Jianguo Zhao, Jin Ren, Lifang Zhang & Yi Jin. (2015) Self-aggregated nanoparticles of linoleic acid-modified glycol chitosan conjugate as delivery vehicles for paclitaxel: preparation, characterization and evaluation. Journal of Biomaterials Science, Polymer Edition 26:18, pages 1475-1489.
Read now
Wence Ding & Lin Guo. (2013) Immobilized transferrin Fe3O4@SiO2 nanoparticle with high doxorubicin loading for dual-targeted tumor drug delivery. International Journal of Nanomedicine 8, pages 4631-4639.
Read now

Articles from other publishers (34)

Sayoni Maitra Roy, Vrinda Garg, Sushmitha Pedugu Sivaraman, Sourav Barman, Chitrita Ghosh, Pousali Bag, Palanivelmurugan Mohanasundaram, Partha Sona Maji, Arnab Basu, Anjaneyulu Dirisala, Surya K. Ghosh & Amit Ranjan Maity. (2023) Overcoming the barriers of nuclear-targeted drug delivery using nanomedicine-based strategies for enhanced anticancer therapy. Journal of Drug Delivery Science and Technology 83, pages 104408.
Crossref
Ravi Shankar, Suman Nayak, Sneha Singh, Abhik Sen, Nitesh Kumar, Rashmi Bhushan, Maansi Aggarwal & Prolay Das. (2023) Simultaneous Sustained Drug Delivery, Tracking, and On-Demand Photoactivation of DNA–Hydrogel Formulated from a Biomass-Derived DNA Nanoparticle. ACS Applied Bio Materials 6:4, pages 1556-1565.
Crossref
Diogo B. Bitoque, Joana Morais, Ana V. Oliveira, Raquel L. Sequeira, Sofia M. Calado, Tiago M. Fortunato, Sónia Simão, Ana M. Rosa da Costa & Gabriela A. Silva. (2021) Human-derived NLS enhance the gene transfer efficiency of chitosan. Bioscience Reports 41:1.
Crossref
Ju Hee Ryu, Hong Yeol Yoon, In‐Cheol Sun, Ick Chan Kwon & Kwangmeyung Kim. (2020) Tumor‐Targeting Glycol Chitosan Nanoparticles for Cancer Heterogeneity. Advanced Materials 32:51, pages 2002197.
Crossref
Garima Shrivastava, Hamid A. Bakshi, Alaa A. Aljabali, Vijay Mishra, Faruck L. Hakkim, Nitin B. Charbe, Prashant Kesharwani, Dinesh K. Chellappan, Kamal Dua & Murtaza M. Tambuwala. (2020) Nucleic Acid Aptamers as a Potential Nucleus Targeted Drug Delivery System. Current Drug Delivery 17:2, pages 101-111.
Crossref
Sivan Louzoun‐Zada, Qais Z. Jaber & Micha Fridman. (2019) Guiding Drugs to Target‐Harboring Organelles: Stretching Drug‐Delivery to a Higher Level of Resolution. Angewandte Chemie International Edition 58:44, pages 15584-15594.
Crossref
Sivan Louzoun‐Zada, Qais Z. Jaber & Micha Fridman. (2019) Guiding Drugs to Target‐Harboring Organelles: Stretching Drug‐Delivery to a Higher Level of Resolution. Angewandte Chemie 131:44, pages 15730-15740.
Crossref
Alvin J. Mukalel, Rachel S. Riley, Rui Zhang & Michael J. Mitchell. (2019) Nanoparticles for nucleic acid delivery: Applications in cancer immunotherapy. Cancer Letters 458, pages 102-112.
Crossref
Xiang Feng, Yunfeng Zhou, Xin Xie, Ming Li, Hao Huang, Liangliang Wang, Xiao Xu & Jingmou Yu. (2019) Development of PSMA-targeted and core-crosslinked glycol chitosan micelles for docetaxel delivery in prostate cancer therapy. Materials Science and Engineering: C 96, pages 436-445.
Crossref
M. Junaid Dar & Gul Majid Khan. 2019. Materials for Biomedical Engineering. Materials for Biomedical Engineering 215 257 .
Saurabh Sharma, Samrat Mazumdar, Kishan S. Italiya, Tushar Date, Ram I. Mahato, Anupama Mittal & Deepak Chitkara. (2018) Cholesterol and Morpholine Grafted Cationic Amphiphilic Copolymers for miRNA-34a Delivery. Molecular Pharmaceutics 15:6, pages 2391-2402.
Crossref
Hui Huang, Yanze Li, Mingjuan Wu, Jing Luo, Junhui Nie, Baoyu Hou, Qi He, Yan Diao, Lin Qi, Yuanyuan Zhao, Ying Liu, Dan Yang & Lingyun Zhou. (2018) Effects of ethanol on the anticancer function of doxorubicin in JJ012 cells. Future Oncology 14:13, pages 1285-1297.
Crossref
Ping Yao, Peng Li, Jun-jian Jiang & Hong-ye Li. (2018) Anastomotic stoma coated with chitosan film as a betamethasone dipropionate carrier for peripheral nerve regeneration. Neural Regeneration Research 13:2, pages 309.
Crossref
Dun Fan, Jingmou Yu, Ruiqiao Yan, Xiao Xu, Yunfei Wang, Xin Xie, Chaolian Liu, Yonghua Liu & Hao Huang. (2018) Preparation and Evaluation of Doxorubicin-Loaded Micelles Based on Glycyrrhetinic Acid Modified Gelatin Conjugates for Targeting Hepatocellular Carcinoma. Journal of Nanomaterials 2018, pages 1-13.
Crossref
Edyta Matysiak-Brynda, Piotr Bujak, Ewa Augustin, Agata Kowalczyk, Zofia Mazerska, Adam Pron & Anna M. Nowicka. (2018) Stable nanoconjugates of transferrin with alloyed quaternary nanocrystals Ag–In–Zn–S as a biological entity for tumor recognition. Nanoscale 10:3, pages 1286-1296.
Crossref
Jiao Feng, Yan Chen, Feng Li, Lili Cui, Nianqiu Shi, Wei Kong & Yong Zhang. (2017) Synthesis, Characterization and In Vitro Evaluation of a Novel Glycol Chitosan-EDTA Conjugate to Inhibit Aminopeptidase-Mediated Degradation of Thymopoietin Oligopeptides. Molecules 22:8, pages 1253.
Crossref
Hongxia Liu, Shuqin Wu, Jingmou Yu, Dun Fan, Jin Ren, Lei Zhang & Jianguo Zhao. (2017) Reduction-sensitive micelles self-assembled from amphiphilic chondroitin sulfate A-deoxycholic acid conjugate for triggered release of doxorubicin. Materials Science and Engineering: C 75, pages 55-63.
Crossref
Kevin Plourde, Rabeb Mouna Derbali, Arnaud Desrosiers, Céline Dubath, Alexis Vallée-Bélisle & Jeanne Leblond. (2017) Aptamer-based liposomes improve specific drug loading and release. Journal of Controlled Release 251, pages 82-91.
Crossref
Giulia Suarato, Weiyi Li & Yizhi Meng. (2016) Role of p H-responsiveness in the design of chitosan-based cancer nanotherapeutics: A review . Biointerphases 11:4.
Crossref
. 2016. Controlled Release Systems. Controlled Release Systems 441 464 .
Yunfeng Zhou, Jingmou Yu, Xiang Feng, Weidong Li, Yunfei Wang, Hongguang Jin, Hao Huang, Yonghua Liu & Dun Fan. (2016) Reduction-responsive core-crosslinked micelles based on a glycol chitosan–lipoic acid conjugate for triggered release of doxorubicin. RSC Adv. 6:37, pages 31391-31400.
Crossref
Ankit Saneja, Chetan Nehate, Noor Alam & Prem N. Gupta. 2016. Chitin and Chitosan for Regenerative Medicine. Chitin and Chitosan for Regenerative Medicine 229 259 .
Salma N. Tammam, Hassan ME. Azzazy, Hans G. Breitinger & Alf Lamprecht. (2015) Chitosan Nanoparticles for Nuclear Targeting: The Effect of Nanoparticle Size and Nuclear Localization Sequence Density. Molecular Pharmaceutics 12:12, pages 4277-4289.
Crossref
Jingmou Yu, Yufeng Zhou, Wencong Chen, Jin Ren, Lifang Zhang, Lu Lu, Gan Luo & Hao Huang. (2015) Preparation, Characterization and Evaluation of α-Tocopherol Succinate-Modified Dextran Micelles as Potential Drug Carriers. Materials 8:10, pages 6685-6696.
Crossref
Can Cui, Ping Yu, Ming Wu, Yang Zhang, Lei Liu, Bo Wu, Cai-Xia Wang, Ren-Xi Zhuo & Shi-Wen Huang. (2015) Reduction-sensitive micelles with sheddable PEG shells self-assembled from a Y-shaped amphiphilic polymer for intracellular doxorubicine release. Colloids and Surfaces B: Biointerfaces 129, pages 137-145.
Crossref
Ming-Mao Chen, Yu-Qing Huang, Huan Cao, Yan Liu, Hao Guo, Lillian S. Chen, Jian-Hua Wang & Qi-Qing Zhang. (2015) Collagen/chitosan film containing biotinylated glycol chitosan nanoparticles for localized drug delivery. Colloids and Surfaces B: Biointerfaces 128, pages 339-346.
Crossref
A. A. Rosenkranz, A. V. Ulasov, T. A. Slastnikova, Y. V. Khramtsov & A. S. Sobolev. (2014) Use of intracellular transport processes for targeted drug delivery into a specified cellular compartment. Biochemistry (Moscow) 79:9, pages 928-946.
Crossref
Paolo Verderio, Svetlana Avvakumova, Giulia Alessio, Michela Bellini, Miriam Colombo, Elisabetta Galbiati, Serena Mazzucchelli, Jesus Peñaranda Avila, Benedetta Santini & Davide Prosperi. (2014) Delivering Colloidal Nanoparticles to Mammalian Cells: A Nano-Bio Interface Perspective. Advanced Healthcare Materials 3:7, pages 957-976.
Crossref
Jing-Mou Yu, Wei-Dong Li, Lu Lu, Xue-Yun Zhou, Dian-Yuan Wang, Hui-Min Li, Xiao-Yuan Xu & Jian Chen. (2013) Preparation and characterization of galactosylated glycol chitosan micelles and its potential use for hepatoma-targeting delivery of doxorubicin. Journal of Materials Science: Materials in Medicine 25:3, pages 691-701.
Crossref
Jing Xu, Jingmou Yu, Xiao Xu, Liangliang Wang, Yonghua Liu, Lixin Li, Jianguo Zhao & Ming He. (2014) Development, Characterization, and Evaluation of PSMA-Targeted Glycol Chitosan Micelles for Prostate Cancer Therapy. Journal of Nanomaterials 2014, pages 1-13.
Crossref
Jingmou Yu, Xin Xie, Xiaoyuan Xu, Lei Zhang, Xueyun Zhou, Huan Yu, Ping Wu, Ting Wang, Xiangxin Che & Zhihong Hu. (2014) Development of dual ligand-targeted polymeric micelles as drug carriers for cancer therapy in vitro and in vivo. Journal of Materials Chemistry B 2:15, pages 2114.
Crossref
Jo-Ann Chuah, David L. Kaplan & Keiji Numata. 2014. Engineering in Translational Medicine. Engineering in Translational Medicine 667 689 .
Sutapa Barua & Samir Mitragotri. (2013) Synergistic Targeting of Cell Membrane, Cytoplasm, and Nucleus of Cancer Cells Using Rod-Shaped Nanoparticles. ACS Nano 7:11, pages 9558-9570.
Crossref
Bryan Hoang, Sandra N. Ekdawi, Raymond M. Reilly & Christine Allen. (2013) Active Targeting of Block Copolymer Micelles with Trastuzumab Fab Fragments and Nuclear Localization Signal Leads to Increased Tumor Uptake and Nuclear Localization in HER2-Overexpressing Xenografts. Molecular Pharmaceutics 10:11, pages 4229-4241.
Crossref