Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 17, 1987 - Issue 5
144
Views
105
CrossRef citations to date
0
Altmetric
Research Article

The metabolism of 14C-labelled trimethylamine and its N-oxide in man

, , &
Pages 551-558 | Received 24 Feb 1986, Published online: 22 Sep 2008

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (5)

A. Q. Zhang, S. C. Mitchell & R. L. Smith. (1996) Discontinuous distribution of N-oxidation of dietary-derived trimethylamine in a British population. Xenobiotica 26:9, pages 957-961.
Read now
B.‐G. Svensson, B. Åkesson, A. Nilsson & K. Paulsson. (1994) Urinary excretion of methylamines in men with varying intake of fish from the baltic sea. Journal of Toxicology and Environmental Health 41:4, pages 411-420.
Read now
A. Q. Zhang, S. C. Mitchell, T. Barrett, R. Ayesh & R. L. Smith. (1994) Fate of dimethylamine in man. Xenobiotica 24:4, pages 379-387.
Read now
A. Q. Zhang, S. C. Mitchell & R. L. Smith. (1994) Fate of dimethylamine in rat and mouse. Xenobiotica 24:12, pages 1215-1221.
Read now
F. Peter Guengerich. (1990) Enzymatic Oxidation of Xenobiotic Chemical. Critical Reviews in Biochemistry and Molecular Biology 25:2, pages 97-153.
Read now

Articles from other publishers (100)

Ozkan Gungor, Nuri Baris Hasbal & Demet Alaygut. (2023) N-óxido de trimetilamina e doenças renais: o que sabemos?. Brazilian Journal of Nephrology.
Crossref
Ozkan Gungor, Nuri Baris Hasbal & Demet Alaygut. (2023) Trimethylamine N-oxide and kidney diseases: what do we know?. Brazilian Journal of Nephrology.
Crossref
Marie Evans, Lu Dai, Carla Maria Avesani, Karolina Kublickiene & Peter Stenvinkel. (2023) The dietary source of trimethylamine N-oxide and clinical outcomes: an unexpected liaison. Clinical Kidney Journal 16:11, pages 1804-1812.
Crossref
Sai Pan, Delong Zhao, Shuwei Duan & Xiangmei Chen. (2023) The role of gut-dependent molecule trimethylamine N-oxide as a novel target for the treatment of chronic kidney disease. International Urology and Nephrology 55:7, pages 1747-1756.
Crossref
Kevin C. Klatt. 2023. Encyclopedia of Human Nutrition. Encyclopedia of Human Nutrition 162 174 .
Laura Bordoni, Roberta Galeazzi, Giorgia Giorgini & Rosita Gabbianelli. (2022) Effects of Trimethylamine and Trimethylamine Oxide on Human Serum Albumin Observed by Tryptophan Fluorescence and Absorbance Spectroscopies. Applied Sciences 13:1, pages 421.
Crossref
Espen Ø. Bjørnestad, Indu Dhar, Gard F. T. Svingen, Eva R. Pedersen, Stein Ørn, Mads M. Svenningsson, Grethe S. Tell, Per M. Ueland, Gerhard Sulo, Reijo Laaksonen & Ottar Nygård. (2022) Circulating trimethylamine N ‐oxide levels do not predict 10‐year survival in patients with or without coronary heart disease . Journal of Internal Medicine 292:6, pages 915-924.
Crossref
Katie R. Zarbock, Jessica H. Han, Ajay P. Singh, Sydney P. Thomas, Barbara B. Bendlin, John M. Denu, John-Paul J. Yu, Federico E. Rey & Tyler K. Ulland. (2022) Trimethylamine N-Oxide Reduces Neurite Density and Plaque Intensity in a Murine Model of Alzheimer’s Disease. Journal of Alzheimer's Disease 90:2, pages 585-597.
Crossref
Tanya L. France, William A. Myers, Awais Javaid, Ian R. Frost & Joseph W. McFadden. (2022) Changes in plasma and milk choline metabolite concentrations in response to the provision of various rumen-protected choline prototypes in lactating dairy cows. Journal of Dairy Science 105:12, pages 9509-9522.
Crossref
Sankar Simla Praveenraj, Sharma Sonali, Nikhilesh Anand, Hediyal Ahmed Tousif, Chandrasekaran Vichitra, Manjunath Kalyan, Perumalswamy Velumani Kanna, Kumar A. Chandana, Paneyala Shasthara, Arehally M. Mahalakshmi, Jian Yang, Seithikurippu R. Pandi-Perumal, Meena Kishore Sakharkar & Saravana Babu Chidambaram. (2022) The Role of a Gut Microbial-Derived Metabolite, Trimethylamine N-Oxide (TMAO), in Neurological Disorders. Molecular Neurobiology 59:11, pages 6684-6700.
Crossref
Jessica Rebeaud, Benjamin Peter & Caroline Pot. (2022) How Microbiota-Derived Metabolites Link the Gut to the Brain during Neuroinflammation. International Journal of Molecular Sciences 23:17, pages 10128.
Crossref
Ashal Ilyas, Yasanandana Supunsiri Wijayasinghe, Ilyas Khan, Nourhan M. El Samaloty, Mohd Adnan, Tanveer Ali Dar, Nitesh Kumar Poddar, Laishram R. Singh, Hemlata Sharma & Shahanavaj Khan. (2022) Implications of trimethylamine N-oxide (TMAO) and Betaine in Human Health: Beyond Being Osmoprotective Compounds. Frontiers in Molecular Biosciences 9.
Crossref
Ye Zixin, Chen Lulu, Zeng Xiangchang, Fang Qing, Zheng Binjie, Luo Chunyang, Rao Tai & Ouyang Dongsheng. (2022) TMAO as a potential biomarker and therapeutic target for chronic kidney disease: A review. Frontiers in Pharmacology 13.
Crossref
Rachel E. Elam, Petra Bůžková, Joshua I. Barzilay, Zeneng Wang, Ina Nemet, Matthew J. Budoff, Jane A. Cauley, Howard A. Fink, Yujin Lee, John A. Robbins, Meng Wang, Stanley L. Hazen, Dariush Mozaffarian & Laura D. Carbone. (2022) Trimethylamine N-oxide and hip fracture and bone mineral density in older adults: The cardiovascular health study. Bone 161, pages 116431.
Crossref
Chiu-Huang Kuo, Chin-Hung Liu, Ji-Hung Wang & Bang-Gee Hsu. (2022) Serum Trimethylamine N-Oxide Levels Correlate with Metabolic Syndrome in Coronary Artery Disease Patients. International Journal of Environmental Research and Public Health 19:14, pages 8710.
Crossref
Qianqian Wang, Min Guo, Yang Liu, Mengshu Xu, Liuting Shi, Xiu Li, Jianxin Zhao, Hao Zhang, Gang Wang & Wei Chen. (2022) Bifidobacterium breve and Bifidobacterium longum Attenuate Choline-Induced Plasma Trimethylamine N-Oxide Production by Modulating Gut Microbiota in Mice. Nutrients 14:6, pages 1222.
Crossref
Chunxia Shi, Maohua Pei, Yao Wang, Qian Chen, Pan Cao, Luyi Zhang, Jin Guo, Wei Deng, Luwen Wang, Xun Li & Zuojiong Gong. (2022) Changes of flavin-containing monooxygenases and trimethylamine-N-oxide may be involved in the promotion of non-alcoholic fatty liver disease by intestinal microbiota metabolite trimethylamine. Biochemical and Biophysical Research Communications 594, pages 1-7.
Crossref
Emily S. Krueger, Joseph L. Beales, Kacie B. Russon, Weston S. Elison, Jordan R. Davis, Jackson M. Hansen, Andrew P. Neilson, Jason M. Hansen & Jeffery S. Tessem. (2021) Gut Metabolite Trimethylamine N-Oxide Protects INS-1 β-Cell and Rat Islet Function under Diabetic Glucolipotoxic Conditions. Biomolecules 11:12, pages 1892.
Crossref
Clemens Ringel, Julia Dittrich, Alexander Gaudl, Paul Schellong, Carl Friedrich Beuchel, Ronny Baber, Frank Beutner, Andrej Teren, Christoph Engel, Kerstin Wirkner, Holger Thiele, Petra Büttner, Markus Löffler, Markus Scholz, Joachim Thiery & Uta Ceglarek. (2021) Association of plasma trimethylamine N-oxide levels with atherosclerotic cardiovascular disease and factors of the metabolic syndrome. Atherosclerosis 335, pages 62-67.
Crossref
Yujin Lee, Ina Nemet, Zeneng Wang, Heidi T. M. Lai, Marcia C. de Oliveira Otto, Rozenn N. Lemaitre, Amanda M. Fretts, Nona Sotoodehnia, Matthew Budoff, Joseph A. DiDonato, Barbara McKnight, W. H. Wilson Tang, Bruce M. Psaty, David S. Siscovick, Stanley L. Hazen & Dariush Mozaffarian. (2021) Longitudinal Plasma Measures of Trimethylamine N‐Oxide and Risk of Atherosclerotic Cardiovascular Disease Events in Community‐Based Older Adults. Journal of the American Heart Association 10:17.
Crossref
William A. Myers, Feiran Wang, Crystal Chang, Amanda N. Davis, J. Eduardo Rico, Brianna N. Tate, Tanya L. France, Linfeng F. Wang & Joseph W. McFadden. (2021) Intravenous trimethylamine N-oxide infusion does not modify circulating markers of liver health, glucose tolerance, and milk production in early-lactation cows. Journal of Dairy Science 104:9, pages 9948-9955.
Crossref
Emily S. Krueger, Trevor S. Lloyd & Jeffery S. Tessem. (2021) The Accumulation and Molecular Effects of Trimethylamine N-Oxide on Metabolic Tissues: It’s Not All Bad. Nutrients 13:8, pages 2873.
Crossref
Linn A. Vikøren, Aslaug Drotningsvik, Øivind Midttun, Adrian McCann, Marthe T. Bergseth, Maren H. Austgulen, Gunnar Mellgren, Per Magne Ueland & Oddrun A. Gudbrandsen. (2021) Baked cod consumption delayed the development of kidney and liver dysfunction and affected plasma amino acid concentrations, but did not affect blood pressure, blood glucose or liver triacylglycerol concentrations in obese fa/fa Zucker rats.. Nutrition Research 92, pages 72-83.
Crossref
Yan Zeng, Man Guo, Xia Fang, Fangyuan Teng, Xiaozhen Tan, Xinyue Li, Mei Wang, Yang Long & Yong Xu. (2021) Gut Microbiota-Derived Trimethylamine N-Oxide and Kidney Function: A Systematic Review and Meta-Analysis. Advances in Nutrition 12:4, pages 1286-1304.
Crossref
Saba Naghipour, Amanda J. Cox, Jason N. Peart, Eugene F. Du Toit & John P. Headrick. (2020) Trimethylamine N -oxide: heart of the microbiota–CVD nexus? . Nutrition Research Reviews 34:1, pages 125-146.
Crossref
Hiroyuki Takashima, Takashi Maruyama & Masanori Abe. (2021) Significance of Levocarnitine Treatment in Dialysis Patients. Nutrients 13:4, pages 1219.
Crossref
Fei Guo, Qing Dai, Xiangchang Zeng, Yan Liu, Zhirong Tan, Hao Zhang & Dongsheng Ouyang. (2020) Renal function is associated with plasma trimethylamine-N-oxide, choline, l-carnitine and betaine: a pilot study. International Urology and Nephrology 53:3, pages 539-551.
Crossref
Fei Guo, Xueting Qiu, Zhirong Tan, Zhenyu Li & Dongsheng Ouyang. (2020) Plasma trimethylamine n-oxide is associated with renal function in patients with heart failure with preserved ejection fraction. BMC Cardiovascular Disorders 20:1.
Crossref
José C. Aponte, Jamie E. Elsila, Jason E. Hein, Jason P. Dworkin, Daniel P. Glavin, Hannah L. McLain, Eric T. Parker, Timothy Cao, Eve L. Berger & Aaron S. Burton. (2020) Analysis of amino acids, hydroxy acids, and amines in CR chondrites. Meteoritics & Planetary Science 55:11, pages 2422-2439.
Crossref
Ingrid V. Hagen, Anita Helland, Marianne Bratlie, Øivind Midttun, Adrian McCann, Harald Sveier, Grethe Rosenlund, Gunnar Mellgren, Per Magne Ueland & Oddrun Anita Gudbrandsen. (2019) TMAO, creatine and 1-methylhistidine in serum and urine are potential biomarkers of cod and salmon intake: a randomised clinical trial in adults with overweight or obesity. European Journal of Nutrition 59:5, pages 2249-2259.
Crossref
Marco WitkowskiTaylor L. WeeksStanley L. Hazen. (2020) Gut Microbiota and Cardiovascular Disease. Circulation Research 127:4, pages 553-570.
Crossref
Christopher Papandreou, Margret Moré & Aouatef Bellamine. (2020) Trimethylamine N-Oxide in Relation to Cardiometabolic Health—Cause or Effect?. Nutrients 12:5, pages 1330.
Crossref
Carlee I. Oakley, Julian A. Vallejo, Derek Wang, Mark A. Gray, LeAnn M. Tiede-Lewis, Tilitha Shawgo, Emmanuel Daon, George Zorn3rd3rd, Jason R. Stubbs & Michael J. Wacker. (2020) Trimethylamine- N -oxide acutely increases cardiac muscle contractility . American Journal of Physiology-Heart and Circulatory Physiology 318:5, pages H1272-H1282.
Crossref
Hendrik Bartolomaeus, Victoria McParland & Nicola Wilck. (2020) Darm-Herz-AchseGut-heart axis. Herz 45:2, pages 134-141.
Crossref
Yingqian Zhu, Qingqing Li & Hua Jiang. (2020) Gut Microbiota in Atherosclerosis: Focus on Trimethylamine N‐Oxide. APMIS.
Crossref
Ian R. Phillips & Elizabeth A. Shephard. (2019) Endogenous Roles of Mammalian Flavin-Containing Monooxygenases. Catalysts 9:12, pages 1001.
Crossref
Cassandra Johnson, Alexander J. Prokopienko, Raymond E. WestIIIIII, Thomas D. Nolin & Jason R. Stubbs. (2018) Decreased Kidney Function Is Associated with Enhanced Hepatic Flavin Monooxygenase Activity and Increased Circulating Trimethylamine N -Oxide Concentrations in Mice . Drug Metabolism and Disposition 46:9, pages 1304-1309.
Crossref
Takeshi Kitai & W.H. Wilson Tang. (2018) Gut microbiota in cardiovascular disease and heart failure. Clinical Science 132:1, pages 85-91.
Crossref
Sunil Veeravalli, Kersti Karu, Flora Scott, Diede Fennema, Ian R. Phillips & Elizabeth A. Shephard. (2018) Effect of Flavin-Containing Monooxygenase Genotype, Mouse Strain, and Gender on Trimethylamine N -oxide Production, Plasma Cholesterol Concentration, and an Index of Atherosclerosis . Drug Metabolism and Disposition 46:1, pages 20-25.
Crossref
Ralf Krüger, Benedikt Merz, Manuela J. Rist, Paola G. Ferrario, Achim Bub, Sabine E. Kulling & Bernhard Watzl. (2017) Associations of current diet with plasma and urine TMAO in the KarMeN study: direct and indirect contributions. Molecular Nutrition & Food Research 61:11, pages 1700363.
Crossref
James A.P. Tomlinson & David C. Wheeler. (2017) The role of trimethylamine N-oxide as a mediator of cardiovascular complications in chronic kidney disease. Kidney International 92:4, pages 809-815.
Crossref
Takeshi Miyake, Tadahaya Mizuno, Tatsuki Mochizuki, Miyuki Kimura, Shunji Matsuki, Shin Irie, Ichiro Ieiri, Kazuya Maeda & Hiroyuki Kusuhara. (2017) Involvement of Organic Cation Transporters in the Kinetics of Trimethylamine N-oxide. Journal of Pharmaceutical Sciences 106:9, pages 2542-2550.
Crossref
Steven H. ZeiselManya Warrier. (2017) Trimethylamine N -Oxide, the Microbiome, and Heart and Kidney Disease . Annual Review of Nutrition 37:1, pages 157-181.
Crossref
Wendy A. Teft, Bridget L. Morse, Brenda F. Leake, Aze Wilson, Sara E. Mansell, Robert A. Hegele, Richard H. Ho & Richard B. Kim. (2016) Identification and Characterization of Trimethylamine- N -oxide Uptake and Efflux Transporters . Molecular Pharmaceutics 14:1, pages 310-318.
Crossref
Makiko Shimizu & Hiroshi Yamazaki. (2017) Human plasma and urinary metabolic profiles of trimethylamine and trimethylamine <i>N</i>-oxide extrapolated using a simple physiologically based pharmacokinetic model. The Journal of Toxicological Sciences 42:4, pages 485-490.
Crossref
Takashi Maruyama, Terumi Higuchi, Toshio Yamazaki, Erina Okawa, Hideyuki Ando, Osamu Oikawa, Atsushi Inoshita, Kazuyoshi Okada & Masanori Abe. (2017) Levocarnitine Injections Decrease the Need for Erythropoiesis-Stimulating Agents in Hemodialysis Patients with Renal Anemia. Cardiorenal Medicine 7:3, pages 188-197.
Crossref
Sahir Kalim & Eugene P. Rhee. (2017) An overview of renal metabolomics. Kidney International 91:1, pages 61-69.
Crossref
D. Fennema, I. R. Phillips & E. A. Shephard. (2016) Trimethylamine and Trimethylamine N-Oxide, a Flavin-Containing Monooxygenase 3 (FMO3)-Mediated Host-Microbiome Metabolic Axis Implicated in Health and Disease. Drug Metabolism and Disposition 44:11, pages 1839-1850.
Crossref
Aki Mafune, Takeo Iwamoto, Yusuke Tsutsumi, Akio Nakashima, Izumi Yamamoto, Keitaro Yokoyama, Takashi Yokoo & Mitsuyoshi Urashima. (2015) Associations among serum trimethylamine-N-oxide (TMAO) levels, kidney function and infarcted coronary artery number in patients undergoing cardiovascular surgery: a cross-sectional study. Clinical and Experimental Nephrology 20:5, pages 731-739.
Crossref
. (2016) Dietary Reference Values for choline. EFSA Journal 14:8.
Crossref
Takeshi Kitai, Jennifer Kirsop & W. H. Wilson Tang. (2016) Exploring the Microbiome in Heart Failure. Current Heart Failure Reports 13:2, pages 103-109.
Crossref
Jason R. Stubbs, John A. House, A. Jacob Ocque, Shiqin Zhang, Cassandra Johnson, Cassandra Kimber, Kyle Schmidt, Aditi Gupta, James B. Wetmore, Thomas D. Nolin, John A. Spertus & Alan S. Yu. (2016) Serum Trimethylamine-N-Oxide is Elevated in CKD and Correlates with Coronary Atherosclerosis Burden. Journal of the American Society of Nephrology 27:1, pages 305-313.
Crossref
Andrew J. Ocque, Jason R. Stubbs & Thomas D. Nolin. (2015) Development and validation of a simple UHPLC?MS/MS method for the simultaneous determination of trimethylamine N-oxide, choline, and betaine in human plasma and urine. Journal of Pharmaceutical and Biomedical Analysis 109, pages 128-135.
Crossref
W.H. Wilson TangZeneng WangDavid J. KennedyYuping WuJennifer A. BuffaBrendan Agatisa-BoyleXinmin S. LiBruce S. LevisonStanley L. Hazen. (2015) Gut Microbiota-Dependent Trimethylamine N -Oxide (TMAO) Pathway Contributes to Both Development of Renal Insufficiency and Mortality Risk in Chronic Kidney Disease . Circulation Research 116:3, pages 448-455.
Crossref
. 2002. The MAK‐Collection for Occupational Health and Safety. The MAK‐Collection for Occupational Health and Safety 1 14 .
. 2002. The MAK-Collection for Occupational Health and Safety. The MAK-Collection for Occupational Health and Safety 1 12 .
Maija Dambrova, Elina Skapare-Makarova, Ilze Konrade, Osvalds Pugovics, Solveiga Grinberga, Dace Tirzite, Ramona Petrovska, Ivars Kalvins & Edgars Liepins. (2013) Meldonium decreases the diet-increased plasma levels of trimethylamine N-oxide, a metabolite associated with atherosclerosis. The Journal of Clinical Pharmacology 53:10, pages 1095-1098.
Crossref
J. Wang, H.Y. Yue, Z.Q. Xia, S.G. Wu, H.J. Zhang, F. Ji, L. Xu & G.H. Qi. (2012) Effect of dietary choline supplementation under different flavin-containing monooxygenase 3 genotypes on trimethylamine metabolism in laying hens. Poultry Science 91:9, pages 2221-2228.
Crossref
. 2002. The MAK‐Collection for Occupational Health and Safety. The MAK‐Collection for Occupational Health and Safety 1 12 .
. 2002. The MAK-Collection for Occupational Health and Safety. The MAK-Collection for Occupational Health and Safety 1 318 .
Z H Endre, J W Pickering, M K Storer, W-P Hu, K T Moorhead, R Allardyce, D O McGregor & J M Scotter. (2011) Breath ammonia and trimethylamine allow real-time monitoring of haemodialysis efficacy. Physiological Measurement 32:1, pages 115-130.
Crossref
Kohji Mitsubayashi. 2008. Handbook of Biosensors and Biochips. Handbook of Biosensors and Biochips.
Stephen C. Mitchell, Mary E. Bollard & AiQin Zhang. (2007) Short-chain aliphatic amines in human urine: a mathematical examination of metabolic interrelationships. Metabolism 56:1, pages 19-23.
Crossref
Marcus A. Bain, Randall Faull, Gianfranco Fornasini, Robert W. Milne & Allan M. Evans. (2006) Accumulation of trimethylamine and trimethylamine-N-oxide in end-stage renal disease patients undergoing haemodialysis. Nephrology Dialysis Transplantation 21:5, pages 1300-1304.
Crossref
Marcus A. Bain, Randall Faull, Gianfranco Fornasini, Robert W. Milne, Russell Schumann & Allan M. Evans. (2004) Quantifying trimethylamine and trimethylamine-N-oxide in human plasma: interference from endogenous quaternary ammonium compounds. Analytical Biochemistry 334:2, pages 403-405.
Crossref
S Kenyon, P.L Carmichael, S Khalaque, S Panchal, R Waring, R Harris, R.L Smith & S.C Mitchell. (2004) The passage of trimethylamine across rat and human skin. Food and Chemical Toxicology 42:10, pages 1619-1628.
Crossref
Kohji Mitsubayashi, Yohei Kubotera, Kazuhisa Yano, Yuki Hashimoto, Takuo Kon, Shinya Nakakura, Yoshitake Nishi & Hideaki Endo. (2004) Trimethylamine biosensor with flavin-containing monooxygenase type 3 (FMO3) for fish-freshness analysis. Sensors and Actuators B: Chemical 103:1-2, pages 463-467.
Crossref
Dieter Lang & Amit Kalgutkar. 2003. Drug Metabolizing Enzymes. Drug Metabolizing Enzymes 483 539 .
S. C. Mitchell & R. L. Smith. (2003) Trimethylamine and odorous sweat. Journal of Inherited Metabolic Disease 26:4, pages 415-416.
Crossref
Anne Lundén, Stefan Marklund, Victoria Gustafsson & Leif Andersson. (2002) A Nonsense Mutation in the FMO3 Gene Underlies Fishy Off-Flavor in Cow's Milk . Genome Research 12:12, pages 1885-1888.
Crossref
K. Mitsubayashi & Y. Hashimoto. (2002) Bioelectronic sniffer device for trimethylamine vapor using flavin containing monooxygenase. IEEE Sensors Journal 2:3, pages 133-139.
Crossref
C. W. Lee, B. Tomlinson, J. H.K. Yeung, G. Lin & L. A. Damani. (2000) Distribution of the N-oxidation of dietary-derived trimethylamine in a male Chinese population. Pharmacogenetics 10:9, pages 829-831.
Crossref
Colin T. Dolphin, Azara Janmohamed, Robert L. Smith, Elizabeth A. Shephard & Ian R. Phillips. (2000) Compound heterozygosity for missense mutations in the flavin-containing monooxygenase 3 (FMO3) gene in patients with fish-odour syndrome. Pharmacogenetics 10:9, pages 799-807.
Crossref
Kohji MITSUBAYASHI & Yuki HASHIMOTO. (2000) Development of a Gas-Phase Biosensor for Trimethylamine Using a Flavin-Containing Monooxygenase 3. Electrochemistry 68:11, pages 901-903.
Crossref
Helena C. Murphy, Colin T. Dolphin, Azara Janmohamed, Heather C. Holmes, Helen Michelakakis, Elizabeth A. Shephard, Ronald A. Chalmers, Ian R. Phillips & Richard A. Iles. (2000) A novel mutation in the flavin-containing monooxygenase 3 gene, FMO3, that causes fish-odour syndrome: activity of the mutant enzyme assessed by proton NMR spectroscopy. Pharmacogenetics 10:5, pages 439-451.
Crossref
Taisei Mushiroda, Tsuyoshi Yokoi, Eiji Takahara, Osamu Nagata, Hideo Kato & Tetsuya Kamataki. (2000) The Suncus (Suncus murinus) Shows Poor Metabolic Phenotype for Trimethylamine N-Oxygenation. Toxicology and Applied Pharmacology 162:1, pages 44-48.
Crossref
Taisei Mushiroda, Tsuyoshi Yokoi, Eiji Takahara, Osamu Nagata, Hideo Kato & Tetsuya Kamataki. (1999) Sensitive assay of trimethylamine N-oxide in liver microsomes by headspace gas chromatography with flame thermionic detection. Journal of Chromatography B: Biomedical Sciences and Applications 734:2, pages 319-323.
Crossref
John R Cashman, Yeng Xiong, Jing Lin, Hans Verhagen, Geert van Poppel, Peter J van Bladeren, Shelley Larsen-Su & David E Williams. (1999) In vitro and in vivo inhibition of human flavin-containing monooxygenase form 3 (FMO3) in the presence of dietary indoles. Biochemical Pharmacology 58:6, pages 1047-1055.
Crossref
A.Q Zhang, S.C Mitchell & R.L Smith. (1999) Dietary Precursors of Trimethylamine in Man: A Pilot Study. Food and Chemical Toxicology 37:5, pages 515-520.
Crossref
John Cashman. 1999. Handbook of Drug Metabolism. Handbook of Drug Metabolism 477 505 .
DieterH Lang, CatherineK Yeung, RaimundM Peter, Catherine Ibarra, Rodolfo Gasser, Kiyoshi Itagaki, RichardM Philpot & AllanE Rettie. (1998) Isoform specificity of trimethylamine N-oxygenation by human flavin-containing monooxygenase (FMO) and P450 enzymes. Biochemical Pharmacology 56:8, pages 1005-1012.
Crossref
Antonio Marzo & Salvatore Curti. (1997) l-Carnitine moiety assay: an up-to-date reappraisal covering the commonest methods for various applications. Journal of Chromatography B: Biomedical Sciences and Applications 702:1-2, pages 1-20.
Crossref
Cecilia Zuppi, Irene Messana, Franca Forni, Cristina Rossi, Lucia Pennacchietti, Franco Ferrari & Bruno Giardina. (1997) 1H NMR spectra of normal urines: Reference ranges of the major metabolites. Clinica Chimica Acta 265:1, pages 85-97.
Crossref
T Lundh, B Akesson & S Skerfving. (1995) Effect of dietary intake of trimethylamine on human metabolism of the industrial catalyst dimethylethylamine.. Occupational and Environmental Medicine 52:7, pages 478-483.
Crossref
HF Hadidi, S Cholerton, S Atkinson, YM Irshaid, NM Rawashdeh & JR Idle. (2012) The N‐oxidation of trimethylamine in a Jordanian population.. British Journal of Clinical Pharmacology 39:2, pages 179-181.
Crossref
R Ayesh, S C Mitchell, A Zhang & R L Smith. (1993) The fish odour syndrome: biochemical, familial, and clinical aspects.. BMJ 307:6905, pages 655-657.
Crossref
M. Al-Waiz, M. Mikov, S.C. Mitchell & R.L. Smith. (1992) The exogenous origin of trimethylamine in the mouse. Metabolism 41:2, pages 135-136.
Crossref
Bengt St�hlbom, Thomas Lundh & Bengt �kesson. (1991) Experimental study on the metabolism of dimethylethylamine in man. International Archives of Occupational and Environmental Health 63:5, pages 305-310.
Crossref
C. Dolphin, E.A. Shephard, S. Povey, C.N. Palmer, D.M. Ziegler, R. Ayesh, R.L. Smith & I.R. Phillips. (1991) Cloning, primary sequence, and chromosomal mapping of a human flavin-containing monooxygenase (FMO1). Journal of Biological Chemistry 266:19, pages 12379-12385.
Crossref
M. Al-Waiz & S.C. Mitchell. (1991) THE FATE OF TRIMETHYLAMINE IN THE RAT. Drug Metabolism and Drug Interactions 9:1.
Crossref
Uffe Anthoni, Carsten Christophersen, Lone Gram, Niels H. Nielsen & Per Nielsen. (1991) Poisonings from flesh of the Greenland shark Somniosus microcephalus may be due to trimethylamine. Toxicon 29:10, pages 1205-1212.
Crossref
S. Cholerton & R. L. Smith. 1991. N-Oxidation of Drugs. N-Oxidation of Drugs 107 131 .
E. M. Hawes, T. J. Jaworski, K. K. Midha, G. McKay, J. W. Hubbard & E. D. Korchinski. 1991. N-Oxidation of Drugs. N-Oxidation of Drugs 263 286 .
Kerry-Ann daCosta, J.James Vrbanac & Steven H. Zeisel. (1990) The measurement of dimethylamine, trimethylamine, and trimethylamine N-oxide using capillary gas chromatography-mass spectrometry. Analytical Biochemistry 187:2, pages 234-239.
Crossref
A. Marzo, N. Monti, M. Ripamonti, S. Muck & E.Arrigoni Martelli. (1990) Determination of aliphatic amines by gas and high-performance liquid chromatography. Journal of Chromatography A 507, pages 241-245.
Crossref
Boel Lindegård, Lennart Mathiasson, Jan Åke Jönsson & Bengt Åkesson. (1990) Controlled thermal degradation for the identification and quantification of amine N-oxides in urine. Journal of Chromatography A 514, pages 293-304.
Crossref
Riad Ayesh & Robert L. Smith. (1990) Genetic polymorphism of trimethylamine N-oxidation. Pharmacology & Therapeutics 45:3, pages 387-401.
Crossref
M. Al‐Waiz, R. Ayesh, S. C. Mitchell, J. R. Idle & R. L. Smith. (1988) Trimethylaminuria: The detection of carriers using a trimethylamine load test. Journal of Inherited Metabolic Disease 12:1, pages 80-85.
Crossref
S.H. Zeisel, S. Gettner & M. Youssef. (1989) Formation of aliphatic amine precursors of N-nitrosodimethylamine after oral administration of choline and choline analogues in the rat. Food and Chemical Toxicology 27:1, pages 31-34.
Crossref
. (2012) POSTER COMMUNICATIONS. British Journal of Pharmacology 95:S1.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.