1,030
Views
34
CrossRef citations to date
0
Altmetric
RESEARCH ARTICLE

The effect of magnetic nanoparticle dispersion on temperature distribution in a spherical tissue in magnetic fluid hyperthermia using the lattice Boltzmann method

&
Pages 266-274 | Received 24 Apr 2010, Accepted 25 Aug 2010, Published online: 18 Apr 2011

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (5)

Irene Andreu & Eva Natividad. (2013) Accuracy of available methods for quantifying the heat power generation of nanoparticles for magnetic hyperthermia. International Journal of Hyperthermia 29:8, pages 739-751.
Read now
Gorka Salas, Sabino Veintemillas-Verdaguer & Maria del Puerto Morales. (2013) Relationship between physico-chemical properties of magnetic fluids and their heating capacity. International Journal of Hyperthermia 29:8, pages 768-776.
Read now
Deng-Hai Mi, Zheng Li, Ke-Hu Yang, Nong Cao, Anne Lethaby, Jin-Hui Tian, Nancy Santesso, Bin Ma, Yao-Long Chen & Ya-Li Liu. (2013) Surgery combined with intraoperative hyperthermic intraperitoneal chemotherapy (IHIC) for gastric cancer: A systematic review and meta-analysis of randomised controlled trials. International Journal of Hyperthermia 29:2, pages 156-167.
Read now

Articles from other publishers (29)

Amit Kumar Shaw, Divya Khurana & Sanjeev Soni. (2023) Thermal damage analysis of sub-surface soft tissue sarcoma for indocyanine green mediated photothermal cancer therapy. Thermal Science and Engineering Progress 46, pages 102168.
Crossref
Sandeep Nain, Neeraj Kumar & Pramod Kumar Avti. (2023) Tumor size dependent MNP dose evaluation in realistic breast tumor models for effective magnetic hyperthermia. Medical Engineering & Physics 121, pages 104065.
Crossref
Tahani Al Sariri, Radostin D. Simitev & Raimondo Penta. (2023) Optimal heat transport induced by magnetic nanoparticle delivery in vascularised tumours. Journal of Theoretical Biology 561, pages 111372.
Crossref
Amritpal Singh & Neeraj Kumar. (2023) A coupled finite-volume immersed boundary method for the simulation of bioheat transfer in 3D complex tumor. Engineering with Computers.
Crossref
Muhammad Suleman. 2023. In Silico Approach Towards Magnetic Fluid Hyperthermia of Cancer Treatment. In Silico Approach Towards Magnetic Fluid Hyperthermia of Cancer Treatment 53 72 .
Tahani Al Sariri & Raimondo Penta. (2022) Multi-scale modelling of nanoparticle delivery and heat transport in vascularised tumours. Mathematical Medicine and Biology: A Journal of the IMA 39:4, pages 332-367.
Crossref
Iordana Astefanoaei & Alexandru Stancu. (2021) Thermo-fluid porosity-related effects in the magnetic hyperthermia. The European Physical Journal Plus 136:12.
Crossref
Nickolas D. Polychronopoulos, Apostolos A. Gkountas, Ioannis E. Sarris & Leonidas A. Spyrou. (2021) A Computational Study on Magnetic Nanoparticles Hyperthermia of Ellipsoidal Tumors. Applied Sciences 11:20, pages 9526.
Crossref
Vitalij Novickij, Ramunė Stanevičienė, Rūta Gruškienė, Kazimieras Badokas, Juliana Lukša, Jolanta Sereikaitė, Kęstutis Mažeika, Nikolaj Višniakov, Jurij Novickij & Elena Servienė. (2021) Inactivation of Bacteria Using Bioactive Nanoparticles and Alternating Magnetic Fields. Nanomaterials 11:2, pages 342.
Crossref
Izaz Raouf, Salman Khalid, Asif Khan, Jaehun Lee, Heung Soo Kim & Min-Ho Kim. (2020) A review on numerical modeling for magnetic nanoparticle hyperthermia: Progress and challenges. Journal of Thermal Biology 91, pages 102644.
Crossref
Muhammad Suleman & Samia Riaz. (2020) In silico study of hyperthermia treatment of liver cancer using core-shell CoFe2O4@MnFe2O4 magnetic nanoparticles. Journal of Magnetism and Magnetic Materials 498, pages 166143.
Crossref
Gurmeet Singh, Neeraj Kumar & Pramod Kumar Avti. (2020) Computational evaluation of effectiveness for intratumoral injection strategies in magnetic nanoparticle assisted thermotherapy. International Journal of Heat and Mass Transfer 148, pages 119129.
Crossref
Malka N. Halgamuge & Tao Song. (2020) OPTIMIZING HEATING EFFICIENCY OF HYPERTHERMIA: SPECIFIC LOSS POWER OF MAGNETIC SPHERE COMPOSED OF SUPERPARAMAGNETIC NANOPARTICLES. Progress In Electromagnetics Research B 87, pages 1-17.
Crossref
Iordana Astefanoaei & Alexandru Stancu. (2019) A computational study of the bioheat transfer in magnetic hyperthermia cancer therapy. Journal of Applied Physics 125:19.
Crossref
Iordana Astefanoaei & Alexandru Stancu. 2018. Numerical Simulations in Engineering and Science. Numerical Simulations in Engineering and Science.
Chih-Hsiang Fang, Pei-I Tsai, Shu-Wei Huang, Jui-Sheng Sun, Jenny Zwei-Chieng Chang, Hsin-Hsin Shen, San-Yuan Chen, Feng Huei Lin, Lih-Tao Hsu & Yen-Chun Chen. (2017) Magnetic hyperthermia enhance the treatment efficacy of peri-implant osteomyelitis. BMC Infectious Diseases 17:1.
Crossref
Mostafa Saeedi, Omid Vahidi, Vahabodin Goodarzi, Mohammad Reza Saeb, Leila Izadi & Masoud Mozafari. (2017) A new prospect in magnetic nanoparticle-based cancer therapy: Taking credit from mathematical tissue-mimicking phantom brain models. Nanomedicine: Nanotechnology, Biology and Medicine 13:8, pages 2405-2414.
Crossref
Kara L. Watts & Joshua M. Stern. 2017. Management of Urologic Cancer. Management of Urologic Cancer 213 231 .
Y. Hu, Z. Li, D.-H. Mi, N. Cao, S.-W. Zu, Z.-Z. Wen, X.-L. Yu & Y. Qu. (2017) Chemoradiation combined with regional hyperthermia for advanced oesophageal cancer: a systematic review and meta-analysis. Journal of Clinical Pharmacy and Therapeutics 42:2, pages 155-164.
Crossref
Iordana Astefanoaei, Horia Chiriac & Alexandru Stancu. (2017) Thermal performance of Fe-Cr-Nb-B systems in magnetic hyperthermia. Journal of Applied Physics 121:10.
Crossref
Philipp Lemal, Christoph Geers, Barbara Rothen-Rutishauser, Marco Lattuada & Alke Petri-Fink. (2017) Measuring the heating power of magnetic nanoparticles: an overview of currently used methods. Materials Today: Proceedings 4, pages S107-S117.
Crossref
Eva Natividad & Irene Andreu. 2017. Magnetic Characterization Techniques for Nanomaterials. Magnetic Characterization Techniques for Nanomaterials 261 303 .
Zhi-Qiang Zhang & Soo-Chang Song. (2016) Thermosensitive/superparamagnetic iron oxide nanoparticle-loaded nanocapsule hydrogels for multiple cancer hyperthermia. Biomaterials 106, pages 13-23.
Crossref
E. A. Périgo, G. Hemery, O. Sandre, D. Ortega, E. Garaio, F. Plazaola & F. J. Teran. (2015) Fundamentals and advances in magnetic hyperthermia. Applied Physics Reviews 2:4, pages 041302.
Crossref
Silvio Dutz & Rudolf Hergt. (2014) Magnetic particle hyperthermia—a promising tumour therapy?. Nanotechnology 25:45, pages 452001.
Crossref
Wu Jinghua, Guo Zhendong & Chen Jian. (2014) Efficient Cellular Automata Method for Heat Transfer in Tumor. Journal of Heat Transfer 136:7.
Crossref
Chinthaka P. Gooneratne, Adam Kurnicki, Sotoshi Yamada, Subhas C. Mukhopadhyay & Jürgen Kosel. (2013) Analysis of the Distribution of Magnetic Fluid inside Tumors by a Giant Magnetoresistance Probe. PLoS ONE 8:11, pages e81227.
Crossref
Yin Li, Wenzhong Liu & Jing Zhong. (2012) Comparison of noninvasive and remote temperature estimation employing magnetic nanoparticles in DC and AC applied fields. Comparison of noninvasive and remote temperature estimation employing magnetic nanoparticles in DC and AC applied fields.
Jing Zhong, Wenzhong Liu, Zhongzhou Du, Paulo César de Morais, Qing Xiang & Qingguo Xie. (2012) A noninvasive, remote and precise method for temperature and concentration estimation using magnetic nanoparticles. Nanotechnology 23:7, pages 075703.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.