46
Views
71
CrossRef citations to date
0
Altmetric
Original Article

Enantioselectivity of Candida Rugosa Lipase Toward Carboxylic Acids: A Predictive Rule from Substrate Mapping and X-Ray Crystallography

, , , , &
Pages 209-225 | Published online: 11 Jul 2009

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (3)

Ruslan Yuryev, Marta Ivanova, Valentina Daskalova & Rudolf Müller. (2011) Kinetic resolution of 2-chloro-3,3,3-trifluoropropanoic acid esters catalyzed by lipase from Candida rugosa. Biocatalysis and Biotransformation 29:6, pages 320-327.
Read now
Guy Felix & Alain Berthod. (2007) Commercial Chiral Stationary Phases for the Separations of Clinical Racemic Drugs. Separation & Purification Reviews 36:4, pages 285-481.
Read now
Toshifumi Miyazawa, Hitoshi Iwanaga, Shinichi Ueji & Takashi Yamada. (2000) Optical Resolution of Non-Protein Amino Acids by Lipase-Catalyzed Ester Hydrolysis. Biocatalysis and Biotransformation 17:6, pages 445-458.
Read now

Articles from other publishers (68)

Aparna Das & Bimal Krishna Banik. (2022) Microwave-induced biocatalytic reactions toward medicinally important compounds. Physical Sciences Reviews 7:4-5, pages 507-538.
Crossref
Lunjie Wu, Lei Qin, Yao Nie, Yan Xu & Yi-Lei Zhao. (2022) Computer-aided understanding and engineering of enzymatic selectivity. Biotechnology Advances 54, pages 107793.
Crossref
Bing-Mei Su, Ze-Hui Shao, Ai-Peng Li, Muhammad Naeem, Juan Lin, Li-Dan Ye & Hong-Wei Yu. (2019) Rational Design of Dehydrogenase/Reductases Based on Comparative Structural Analysis of Prereaction-State and Free-State Simulations for Efficient Asymmetric Reduction of Bulky Aryl Ketones. ACS Catalysis 10:1, pages 864-876.
Crossref
Andrew Willetts. (2018) Characterised Flavin-Dependent Two-Component Monooxygenases from the CAM Plasmid of Pseudomonas putida ATCC 17453 (NCIMB 10007): ketolactonases by Another Name. Microorganisms 7:1, pages 1.
Crossref
Hui Chen, Xiao Meng, Xiaoqing Xu, Wenbo Liu & Shengying Li. (2018) The molecular basis for lipase stereoselectivity. Applied Microbiology and Biotechnology 102:8, pages 3487-3495.
Crossref
Kurt FaberKurt Faber. 2018. Biotransformations in Organic Chemistry. Biotransformations in Organic Chemistry 31 313 .
Shau-Wei Tsai. (2016) Enantiopreference of Candida antarctica lipase B toward carboxylic acids: Substrate models and enantioselectivity thereof. Journal of Molecular Catalysis B: Enzymatic 127, pages 98-116.
Crossref
Jiali Gu, Lidan Ye, Fei Guo, Xiaomei Lv, Wenqiang Lu & Hongwei Yu. (2014) Rational design of esterase BioH with enhanced enantioselectivity towards methyl (S)-o-chloromandelate. Applied Microbiology and Biotechnology 99:4, pages 1709-1718.
Crossref
Pieter Van Wouwe, Michiel Dusselier, Aurelie Basiç & Bert F. Sels. (2013) Bridging racemic lactate esters with stereoselective polylactic acid using commercial lipase catalysis. Green Chemistry 15:10, pages 2817.
Crossref
Maurice C. R. Franssen, Peter Steunenberg, Elinor L. Scott, Han Zuilhof & Johan P. M. Sanders. (2013) Immobilised enzymes in biorenewables production. Chemical Society Reviews 42:15, pages 6491.
Crossref
Pengyong You, Jian Qiu, Erzheng Su & Dongzhi Wei. (2013) Carica papaya Lipase Catalysed Resolution of β-Amino Esters for the Highly Enantioselective Synthesis of ( S )-Dapoxetine . European Journal of Organic Chemistry 2013:3, pages 557-565.
Crossref
Pavadee Pachariyanon & David W. Agar. (2012) Selectivity enhancement using permselective microcapsule. Chemical Engineering Journal 207-208, pages 481-489.
Crossref
Monica Paravidino, Philipp Böhm, Harald Gröger & Ulf Hanefeld. 2012. Enzyme Catalysis in Organic Synthesis. Enzyme Catalysis in Organic Synthesis 249 362 .
Eduardo García‐Urdiales, Iván Lavandera & Vicente Gotor. 2012. Enzyme Catalysis in Organic Synthesis. Enzyme Catalysis in Organic Synthesis 43 66 .
Chun-Sheng Chang & Ssu-Ching Ho. (2011) Enantioselective esterification of (R,S)-2-methylalkanoic acid with Carica papaya lipase in organic solvents. Biotechnology Letters 33:11, pages 2247-2253.
Crossref
Ian J. Colton, DeLu (Tyler) Yin, Pawel Grochulski & Romas J. Kazlauskas. (2011) Molecular Basis of Chiral Acid Recognition by Candida rugosa Lipase: X‐Ray Structure of Transition State Analog and Modeling of the Hydrolysis of Methyl 2‐Methoxy‐2‐phenylacetate . Advanced Synthesis & Catalysis 353:13, pages 2529-2544.
Crossref
Jyoti B. Sontakke & Ganapati D. Yadav. (2011) Optimization and kinetic modeling of lipase catalyzed enantioselective N-acetylation of ( ± )-1-phenylethylamine under microwave irradiation. Journal of Chemical Technology & Biotechnology 86:5, pages 739-748.
Crossref
Kurt FaberKurt Faber. 2011. Biotransformations in Organic Chemistry. Biotransformations in Organic Chemistry 31 313 .
María Rodríguez-Mata, Eduardo García-Urdiales, Vicente Gotor-Fernández & Vicente Gotor. (2010) Stereoselective Chemoenzymatic Preparation of β-Amino Esters: Molecular Modelling Considerations in Lipase-Mediated Processes and Application to the Synthesis of ( S )-Dapoxetine . Advanced Synthesis & Catalysis 352:2-3, pages 395-406.
Crossref
Bahar Yeniad, Hemantkumar Naik & Andreas Heise. 2011. Biofunctionalization of Polymers and their Applications. Biofunctionalization of Polymers and their Applications 69 95 .
Eduardo García-Urdiales, Nicolás Ríos-Lombardía, Juan Mangas-Sánchez, Vicente Gotor-Fernández & Vicente Gotor. (2009) Influence of the Nucleophile on the Candida antarctica Lipase B-Catalysed Resolution of a Chiral Acyl Donor. ChemBioChem 10:11, pages 1830-1838.
Crossref
F. Bordes, E. Cambon, V. Dossat-Létisse, I. André, C. Croux, J. M. Nicaud & A. Marty. (2009) Improvement of Yarrowia lipolytica Lipase Enantioselectivity by Using Mutagenesis Targeted to the Substrate Binding Site . ChemBioChem 10:10, pages 1705-1713.
Crossref
Jesper Brask. 2008. The Power of Functional Resins in Organic Synthesis. The Power of Functional Resins in Organic Synthesis 365 380 .
Ganapati D Yadav, Ashwini D Sajgure & Shrikant B Dhoot. (2008) Insight into microwave irradiation and enzyme catalysis in enantioselective resolution of RS‐( ± )‐methyl mandelate. Journal of Chemical Technology & Biotechnology 83:8, pages 1145-1153.
Crossref
Miguel Cancino, Philippe Bauchart, Georgina Sandoval, Jean-Marc Nicaud, Isabelle André, Valérie Dossat & Alain Marty. (2008) A variant of Yarrowia lipolytica lipase with improved activity and enantioselectivity for resolution of 2-bromo-arylacetic acid esters. Tetrahedron: Asymmetry 19:13, pages 1608-1612.
Crossref
Hans‐Erik Högberg. 2008. Organic Synthesis with Enzymes in Non‐Aqueous Media. Organic Synthesis with Enzymes in Non‐Aqueous Media 73 112 .
J. Vakhlu, S. Johri, V. Verma, S. Koul, R. Parshad, S.C. Taneja & G.N. Qazi. (2005) Purification and properties of enantioselective ester hydrolase from a strain of Trichosporon species (DSMZ 11829). Enzyme and Microbial Technology 37:3, pages 330-339.
Crossref
Shilpi Mittal, Smriti Khanna, Animesh Roy, Prasad V. Bharatam & H.P.S. Chawla. (2005) Candida rugosa lipase mediated multigram synthesis of acid part of S(+)-atliprofen, a new NSAID and molecular modeling studies aimed at predicting selectivity of the enzyme. Enzyme and Microbial Technology 36:2-3, pages 232-238.
Crossref
David Guieysse, Georgina Sandoval, Laeticia Faure, Jean-Marc Nicaud, Pierre Monsan & Alain Marty. (2004) New efficient lipase from Yarrowia lipolytica for the resolution of 2-bromo-arylacetic acid esters. Tetrahedron: Asymmetry 15:22, pages 3539-3543.
Crossref
Seung Hwan Lee, Jong Hyun Choi, Sang Hyun Park, Jong-il Choi & Sang Yup Lee. (2004) Enantioselective resolution of racemic compounds by cell surface displayed lipase. Enzyme and Microbial Technology 35:5, pages 429-436.
Crossref
Seung Hwan Lee, Jong-Il Choi, Si Jae Park, Sang Yup Lee & Byoung Chul Park. (2004) Display of Bacterial Lipase on the Escherichia coli Cell Surface by Using FadL as an Anchoring Motif and Use of the Enzyme in Enantioselective Biocatalysis . Applied and Environmental Microbiology 70:9, pages 5074-5080.
Crossref
Klaus Hegemann, Roland Fröhlich & Günter Haufe. (2004) Synthesis of Enantiopure 9‐Oxabicyclononanediol Derivatives by Lipase‐Catalyzed Transformations and Determination of Their Absolute Configuration. European Journal of Organic Chemistry 2004:10, pages 2181-2192.
Crossref
Kurt FaberKurt Faber. 2004. Biotransformations in Organic Chemistry. Biotransformations in Organic Chemistry 29 333 .
Jürgen Pleiss. 2003. Enzyme Functionality. Enzyme Functionality.
David Guieysse, Christophe Salagnad, Pierre Monsan, Magali Remaud-Simeon & Vinh Tran. (2003) Towards a novel explanation of Pseudomonas cepacia lipase enantioselectivity via molecular modelling of the enantiomer trajectory into the active site. Tetrahedron: Asymmetry 14:13, pages 1807-1817.
Crossref
Klaus Hegemann, Holger Schimanski, Udo Höweler & Günter Haufe. (2003) Selectivity of Candida rugosa lipase in simultaneous separation of skeletal isomers, desymmetrization, and kinetic racemate cleavage of 9-oxabicyclononanediols. Tetrahedron Letters 44:10, pages 2225-2229.
Crossref
David Guieysse, Christophe Salagnad, Pierre Monsan & Magali Remaud-Simeon. (2003) Lipase-catalyzed enantioselective transesterification toward esters of 2-bromo-tolylacetic acids. Tetrahedron: Asymmetry 14:3, pages 317-323.
Crossref
Karl Hult & Kurt Faber. 2002. Encyclopedia of Catalysis. Encyclopedia of Catalysis.
Per Berglund. (2001) Controlling lipase enantioselectivity for organic synthesis. Biomolecular Engineering 18:1, pages 13-22.
Crossref
Romas J. Kazlauskas & Uwe T. Bornscheuer. 2001. Biotechnology Set. Biotechnology Set 37 191 .
T Hartmann, H.H Meyer & T Scheper. (2001) The enantioselective hydrolysis of 3-hydroxy-5-phenyl-4-pentenoicacidethylester in supercritical carbon dioxide using lipases. Enzyme and Microbial Technology 28:7-8, pages 653-660.
Crossref
Michimasa Goto, Masashi Kawasaki, Tadashi Kometani, Takamasa Nonaka & Yukio Mitsui. (2001) Binding site of acyl moiety in ester hydrolysis by Candida rugosa lipase. Journal of Molecular Catalysis B: Enzymatic 11:4-6, pages 1029-1033.
Crossref
Aleksey Zaks. 2001. Kirk-Othmer Encyclopedia of Chemical Technology. Kirk-Othmer Encyclopedia of Chemical Technology.
Fabrizio Manetti, Daniela Mileto, Federico Corelli, Simonetta Soro, Cleofe Palocci, Enrico Cernia, Ilaria D’Acquarica, Marina Lotti, Lilia Alberghina & Maurizio Botta. (2000) Design and realization of a tailor-made enzyme to modify the molecular recognition of 2-arylpropionic esters by Candida rugosa lipase. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology 1543:1, pages 146-158.
Crossref
Alexandra N. E. Weissfloch & Romas J. Kazlauskas. 2000. Enzymes in Action. Enzymes in Action 43 69 .
Kurt FaberKurt Faber. 2000. Biotransformations in Organic Chemistry. Biotransformations in Organic Chemistry 29 333 .
Mats Holmquist & Per Berglund. (1999) Creation of a Synthetically Useful Lipase with Higher Than Wild-Type Enantioselectivity and Maintained Catalytic Activity. Organic Letters 1:5, pages 763-765.
Crossref
Per Berglund, Mats Holmquist & Karl Hult. (1998) Reversed enantiopreference of Candida rugosa lipase supports different modes of binding enantiomers of a chiral acyl donor. Journal of Molecular Catalysis B: Enzymatic 5:1-4, pages 283-287.
Crossref
Tadashi Kometani, Takahiro Isobe, Michimasa Goto, Yoshio Takeuchi & Günter Haufe. (1998) Enzymatic resolution of 2-fluoro-2-arylacetic acid derivatives. Journal of Molecular Catalysis B: Enzymatic 5:1-4, pages 171-174.
Crossref
Mats Holmquist. (1998) Insights into the molecular basis for fatty acyl specificities of lipases from Geotrichum candidum and Candida rugosa. Chemistry and Physics of Lipids 93:1-2, pages 57-65.
Crossref
Romas J. Kazlauskas & Uwe T. Bornscheuer. 1998. Biotechnology. Biotechnology 36 191 .
Fredrik Hæffner, Torbjörn Norin & Karl Hult. (1998) Molecular Modeling of the Enantioselectivity in Lipase-Catalyzed Transesterification Reactions. Biophysical Journal 74:3, pages 1251-1262.
Crossref
Katri Lundell, Timo Raijola & Liisa T. Kanerva. (1998) Enantioselectivity of Pseudomonas cepacia and Candida rugosa lipases for the resolution of secondary alcohols: The effect of Candida rugosa isoenzymes. Enzyme and Microbial Technology 22:2, pages 86-93.
Crossref
Lana E. Janes & Romas J. Kazlauskas. (1997) Empirical rules for the enantiopreference of lipase from Aspergillus niger toward secondary alcohols and carboxylic acids, especially α-amino acids. Tetrahedron: Asymmetry 8:22, pages 3719-3733.
Crossref
Christina L�wendahl & Stig Allenmark. (1997) Analysis of a lipase-catalyzed kinetic resolution by chiral normal-phase liquid chromatography. Biomedical Chromatography 11:5, pages 289-295.
Crossref
J. Zuegg, H. Hönig, J.D. Schrag & M. Cygler. (1997) Selectivity of lipases: Conformational analysis of suggested intermediates in ester hydrolysis of chiral primary and secondary alcohols. Journal of Molecular Catalysis B: Enzymatic 3:1-4, pages 83-98.
Crossref
Kanji Nishizawa, Yasutaka Ohgami, Noritada Matsuo, Hirosi Kisida, Sumio Nishida & Hideo Hirohara. (1997) Lipase-catalyzed hydrolysis of (4-phenoxyphenoxy)propyl acetates for preparation of enantiomerically pure juvenile hormone analogues. Enzyme and Microbial Technology 20:5, pages 333-339.
Crossref
Edina Ljubović & Vitomir Šunjić. (1997) Correlation between distance of the perturbing groups and enantioselectivity of the lipase catalyzed acetylation of acyclic sec alcohols. Tetrahedron: Asymmetry 8:1, pages 1-4.
Crossref
Jim J. Lalonde, Manuel Navia & Alexey L. Margolin. 1997. Lipases Part B: Enzyme Characterization and Utilization. Lipases Part B: Enzyme Characterization and Utilization 443 464 .
Kurt FaberKurt Faber. 1997. Biotransformations in Organic Chemistry. Biotransformations in Organic Chemistry 27 299 .
Kurt Königsberger, Hector Luna, Kapa Prasad, Oljan Repic & Thomas J. Blacklock. (1996) Separation of by enzymatic hydrolysis: Preference for diequatorial isomers. Tetrahedron Letters 37:50, pages 9029-9032.
Crossref
Christine M. Schueller, David D. Manning & Laura L. Kiessling. (1996) Preparation of (r)-(+)-7-oxabicyclo[2.2.1]hept-5-ene-exo-2-carboxylic acid, a precursor to substrates for the ring opening metathesis polymerization. Tetrahedron Letters 37:49, pages 8853-8856.
Crossref
Rose A. Persichetti, Jim J. Lalonde, Chandrika P. Govardhan, Nazer K. Khalaf & Alexey L. Margolin. (1996) Candida rugosa lipase: Enantioselectivity enhancements in organic solvents. Tetrahedron Letters 37:36, pages 6507-6510.
Crossref
Maurice C.R. Franssen, Hugo Jongejan, Huub Kooijman, Anthony L. Spek, Nuno L.F.L. Camacho Mondril, Paulo M.A.C. Boavida dos Santos & Aede de Groot. (1996) Resolution of a tetrahydrofuran ester by Candida rugosa lipase (CRL) and an examination of CRL's stereochemical preference in organic media. Tetrahedron: Asymmetry 7:2, pages 497-510.
Crossref
Mats Holmquist, Fredrik Hæffner, Torbjörn Norin & Karl Hult. (2008) A structural basis for enantioselective inhibition of Candida rugosa lipase by long‐chain aliphatic alcohols . Protein Science 5:1, pages 83-88.
Crossref
Miroslaw Cygler, Pawel Grochulski & Joseph D. Schrag. (1995) Structural determinants defining common stereoselectivity of lipases toward secondary alcohols. Canadian Journal of Microbiology 41:13, pages 289-296.
Crossref
Kurt FaberKurt Faber. 1995. Biotransformations in Organic Chemistry — A Textbook. Biotransformations in Organic Chemistry — A Textbook 24 269 .
Romas J. Kazlauskas. (1994) Elucidating structure-mechanism relationships in lipases: Prospects for predicting and engineering catalytic properties. Trends in Biotechnology 12:11, pages 464-472.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.