378
Views
32
CrossRef citations to date
0
Altmetric
Original Article

Accurate and interpretable nanoSAR models from genetic programming-based decision tree construction approaches

, , , &
Pages 1001-1012 | Received 23 Dec 2015, Accepted 01 Mar 2016, Published online: 06 Apr 2016

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (5)

Aysel Tomak, Selin Cesmeli, Bercem D. Hanoglu, David Winkler & Ceyda Oksel Karakus. (2021) Nanoparticle-protein corona complex: understanding multiple interactions between environmental factors, corona formation, and biological activity. Nanotoxicology 15:10, pages 1331-1357.
Read now
Abdallah S. Abdelsattar, Alyaa Dawoud & Mohamed A. Helal. (2021) Interaction of nanoparticles with biological macromolecules: a review of molecular docking studies. Nanotoxicology 15:1, pages 66-95.
Read now
Irini Furxhi, Finbarr Murphy, Martin Mullins, Athanasios Arvanitis & Craig A. Poland. (2020) Nanotoxicology data for in silico tools: a literature review. Nanotoxicology 14:5, pages 612-637.
Read now
E. Nagihan Kahraman & M. Türker Saçan. (2018) On the prediction of cytotoxicity of diverse chemicals for topminnow (Poeciliopsis lucida) hepatoma cell line, PLHC-1$. SAR and QSAR in Environmental Research 29:9, pages 675-691.
Read now
Agnieszka Gajewicz, Tomasz Puzyn, Katarzyna Odziomek, Piotr Urbaszek, Andrea Haase, Christian Riebeling, Andreas Luch, Muhammad A. Irfan, Robert Landsiedel, Meike van der Zande & Hans Bouwmeester. (2018) Decision tree models to classify nanomaterials according to the DF4nanoGrouping scheme. Nanotoxicology 12:1, pages 1-17.
Read now

Articles from other publishers (27)

Xiliang Yan, Tongtao Yue, David A. Winkler, Yongguang Yin, Hao Zhu, Guibin Jiang & Bing Yan. (2023) Converting Nanotoxicity Data to Information Using Artificial Intelligence and Simulation. Chemical Reviews 123:13, pages 8575-8637.
Crossref
Janeck J. Scott-Fordsmand & Mónica J.B. Amorim. (2023) Using Machine Learning to make nanomaterials sustainable. Science of The Total Environment 859, pages 160303.
Crossref
Akbar Hasanzadeh, Michael R. Hamblin, Jafar Kiani, Hamid Noori, Joseph M. Hardie, Mahdi Karimi & Hadi Shafiee. (2022) Could artificial intelligence revolutionize the development of nanovectors for gene therapy and mRNA vaccines?. Nano Today 47, pages 101665.
Crossref
Tengyi Zhu, Cuicui Tao, Haomiao Cheng & Haibing Cong. (2022) Versatile in silico modelling of microplastics adsorption capacity in aqueous environment based on molecular descriptor and machine learning. Science of The Total Environment 846, pages 157455.
Crossref
Emmanuel Anuoluwa Bamidele, Ahmed Olanrewaju Ijaola, Michael Bodunrin, Oluwaniyi Ajiteru, Afure Martha Oyibo, Elizabeth Makhatha & Eylem Asmatulu. (2022) Discovery and prediction capabilities in metal-based nanomaterials: An overview of the application of machine learning techniques and some recent advances. Advanced Engineering Informatics 52, pages 101593.
Crossref
Mainak Chatterjee, Arkaprava Banerjee, Priyanka De, Agnieszka Gajewicz-Skretna & Kunal Roy. (2022) A novel quantitative read-across tool designed purposefully to fill the existing gaps in nanosafety data. Environmental Science: Nano 9:1, pages 189-203.
Crossref
B. Lavanya & G. Sasipriya. 2022. International Conference on Innovative Computing and Communications. International Conference on Innovative Computing and Communications 443 458 .
Farooq Ahmad, Asif Mahmood & Tahir Muhmood. (2021) Machine learning-integrated omics for the risk and safety assessment of nanomaterials. Biomaterials Science 9:5, pages 1598-1608.
Crossref
Jossana A. Damasco, Saisree Ravi, Joy D. Perez, Daniel E. Hagaman & Marites P. Melancon. (2020) Understanding Nanoparticle Toxicity to Direct a Safe-by-Design Approach in Cancer Nanomedicine. Nanomaterials 10:11, pages 2186.
Crossref
Elisa Giubilato, Virginia Cazzagon, Mónica J. B. Amorim, Magda Blosi, Jacques Bouillard, Hans Bouwmeester, Anna Luisa Costa, Bengt Fadeel, Teresa F. Fernandes, Carlos Fito, Marina Hauser, Antonio Marcomini, Bernd Nowack, Lisa Pizzol, Leagh Powell, Adriele Prina-Mello, Haralambos Sarimveis, Janeck James Scott-Fordsmand, Elena Semenzin, Burkhard Stahlmecke, Vicki Stone, Alexis Vignes, Terry Wilkins, Alex Zabeo, Lang Tran & Danail Hristozov. (2020) Risk Management Framework for Nano-Biomaterials Used in Medical Devices and Advanced Therapy Medicinal Products. Materials 13:20, pages 4532.
Crossref
David A. Winkler. (2020) Role of Artificial Intelligence and Machine Learning in Nanosafety. Small 16:36, pages 2001883.
Crossref
Ajay Vikram Singh, Mohammad Hasan Dad Ansari, Daniel Rosenkranz, Romi Singh Maharjan, Fabian L. Kriegel, Kaustubh Gandhi, Anurag Kanase, Rishabh Singh, Peter Laux & Andreas Luch. (2020) Artificial Intelligence and Machine Learning in Computational Nanotoxicology: Unlocking and Empowering Nanomedicine. Advanced Healthcare Materials 9:17.
Crossref
David A. Winkler. 2020. Machine Learning in Chemistry. Machine Learning in Chemistry 206 226 .
Saheli Ali, Subrata Saha & Anilava Kaviraj. (2019) Fermented mulberry leaf meal as fishmeal replacer in the formulation of feed for carp Labeo rohita and catfish Heteropneustes fossilis—optimization by mathematical programming. Tropical Animal Health and Production 52:2, pages 839-849.
Crossref
Irini Furxhi, Finbarr Murphy, Martin Mullins, Athanasios Arvanitis & Craig A. Poland. (2020) Practices and Trends of Machine Learning Application in Nanotoxicology. Nanomaterials 10:1, pages 116.
Crossref
Etenaldo F. Santiago, Montcharles S. Pontes, Gilberto J. Arruda, Anderson R. L. Caires, Ian Colbeck, Ronald Maldonado-Rodriguez & Renato Grillo. 2020. Nanopesticides. Nanopesticides 69 109 .
Valérie Forest, Jean-François Hochepied & Jérémie Pourchez. (2019) Importance of Choosing Relevant Biological End Points To Predict Nanoparticle Toxicity with Computational Approaches for Human Health Risk Assessment. Chemical Research in Toxicology 32:7, pages 1320-1326.
Crossref
L. Lamon, D. Asturiol, A. Vilchez, R. Ruperez-Illescas, J. Cabellos, A. Richarz & A. Worth. (2019) Computational models for the assessment of manufactured nanomaterials: Development of model reporting standards and mapping of the model landscape. Computational Toxicology 9, pages 143-151.
Crossref
G. Basei, D. Hristozov, L. Lamon, A. Zabeo, N. Jeliazkova, G. Tsiliki, A. Marcomini & A. Torsello. (2019) Making use of available and emerging data to predict the hazards of engineered nanomaterials by means of in silico tools: A critical review. NanoImpact 13, pages 76-99.
Crossref
Maozhu Jin, Hua Wang, Qian Zhang & Cheng Luo. (2018) Financial Management and Decision Based on Decision Tree Algorithm. Wireless Personal Communications 102:4, pages 2869-2884.
Crossref
Bhavna Saini & Sumit Srivastava. (2018) Nanotoxicity prediction using computational modelling - review and future directions. IOP Conference Series: Materials Science and Engineering 348, pages 012005.
Crossref
A. Gajewicz. (2018) How to judge whether QSAR/read-across predictions can be trusted: a novel approach for establishing a model's applicability domain. Environmental Science: Nano 5:2, pages 408-421.
Crossref
Fatemeh Abbasitabar & Vahid Zare-Shahabadi. (2017) In silico prediction of toxicity of phenols to Tetrahymena pyriformis by using genetic algorithm and decision tree-based modeling approach. Chemosphere 172, pages 249-259.
Crossref
Agnieszka Gajewicz. (2017) What if the number of nanotoxicity data is too small for developing predictive Nano-QSAR models? An alternative read-across based approach for filling data gaps. Nanoscale 9:24, pages 8435-8448.
Crossref
Robert KoprowskiRobert Koprowski. 2017. Processing of Hyperspectral Medical Images. Processing of Hyperspectral Medical Images 83 109 .
Abraham Yosipof, Klimentiy Shimanovich & Hanoch Senderowitz. (2016) Materials Informatics: Statistical Modeling in Material Science. Molecular Informatics 35:11-12, pages 568-579.
Crossref
Didier Mathieu. (2016) Physics-Based Modeling of Chemical Hazards in a Regulatory Framework: Comparison with Quantitative Structure–Property Relationship (QSPR) Methods for Impact Sensitivities. Industrial & Engineering Chemistry Research 55:27, pages 7569-7577.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.