1,053
Views
23
CrossRef citations to date
0
Altmetric
Technical Paper

Reactivity Scales as Comparative Tools for Chemical Mechanisms

, , , &
Pages 914-924 | Published online: 24 Jan 2012

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (1)

William R. Stockwell, Emily Saunders, Wendy S. Goliff & Rosa M. Fitzgerald. (2020) A perspective on the development of gas-phase chemical mechanisms for Eulerian air quality models. Journal of the Air & Waste Management Association 70:1, pages 44-70.
Read now

Articles from other publishers (22)

J. Lasne, A. Lostier, M. N. Romanias, S. Vassaux, D. Lesueur, V. Gaudion, M. Jamar, R. G. Derwent, S. Dusanter & T. Salameh. (2023) VOC emissions by fresh and old asphalt pavements at service temperatures: impacts on urban air quality. Environmental Science: Atmospheres 3:11, pages 1601-1619.
Crossref
Rayne Holland, Anwar H. Khan, Richard G. Derwent, Josie Lynch, Fahima Ahmed, Sophia Grace, Asan Bacak & Dudley E. Shallcross. (2023) Gas‐phase kinetics, POCPs, and an investigation of the contributions of VOCs to urban ozone production in the UK. International Journal of Chemical Kinetics 55:7, pages 350-364.
Crossref
Yingnan Zhang, Likun Xue, Jiangshan Mu, Tianshu Chen, Hong Li, Jian Gao & Wenxing Wang. (2022) Developing the Maximum Incremental Reactivity for Volatile Organic Compounds in Major Cities of Central‐Eastern China. Journal of Geophysical Research: Atmospheres 127:22.
Crossref
B. Thera, P. Dominutti, A. Colomb, V. Michoud, J.-F. Doussin, M. Beekmann, F. Dulac, K. Sartelet & A. Borbon. (2022) O 3 –NO y photochemistry in boundary layer polluted plumes: insights from the MEGAPOLI (Paris), ChArMEx/SAFMED (North West Mediterranean) and DACCIWA (southern West Africa) aircraft campaigns . Environmental Science: Atmospheres 2:4, pages 659-686.
Crossref
Chenxin Zhang, Yu Song, Hongli Wang, Limin Zeng, Min Hu, Keding Lu, Shaodong Xie & William P. L. Carter. (2021) Observation-Based Estimations of Relative Ozone Impacts by Using Volatile Organic Compounds Reactivities. Environmental Science & Technology Letters 9:1, pages 10-15.
Crossref
David Daggett, Yizhou Shi & Béla Török. 2022. Contemporary Chemical Approaches for Green and Sustainable Drugs. Contemporary Chemical Approaches for Green and Sustainable Drugs 281 305 .
Florentina Villanueva, Sonia Lara, Mariano Amo-Salas, Beatriz Cabañas, Pilar Martín & Sagrario Salgado. (2021) Investigation of formaldehyde and other carbonyls in a small urban atmosphere using passive samplers. A comprehensive data analysis. Microchemical Journal 167, pages 106270.
Crossref
Yingnan Zhang, Likun Xue, William P. L. Carter, Chenglei Pei, Tianshu Chen, Jiangshan Mu, Yujun Wang, Qingzhu Zhang & Wenxing Wang. (2021) Development of ozone reactivity scales for volatile organic compounds in a Chinese megacity. Atmospheric Chemistry and Physics 21:14, pages 11053-11068.
Crossref
Thiago Nogueira, Pamela Dominutti, Marcelo Vieira-Filho, Adalgiza Fornaro & Maria Andrade. (2019) Evaluating Atmospheric Pollutants from Urban Buses under Real-World Conditions: Implications of the Main Public Transport Mode in São Paulo, Brazil. Atmosphere 10:3, pages 108.
Crossref
D. J. Luecken, S. L. Napelenok, M. Strum, R. Scheffe & S. Phillips. (2018) Sensitivity of Ambient Atmospheric Formaldehyde and Ozone to Precursor Species and Source Types Across the United States. Environmental Science & Technology 52:8, pages 4668-4675.
Crossref
Thiago Nogueira, Pamela Dominutti, Adalgiza Fornaro & Maria Andrade. (2017) Seasonal Trends of Formaldehyde and Acetaldehyde in the Megacity of São Paulo. Atmosphere 8:8, pages 144.
Crossref
M.E. Jenkin, R.G. Derwent & T.J. Wallington. (2017) Photochemical ozone creation potentials for volatile organic compounds: Rationalization and estimation. Atmospheric Environment 163, pages 128-137.
Crossref
H. Lizette Menchaca-Torre, Roberto Mercado-Hernández & Alberto Mendoza-Domínguez. (2015) Diurnal and seasonal variation of volatile organic compounds in the atmosphere of Monterrey, Mexico. Atmospheric Pollution Research 6:6, pages 1073-1081.
Crossref
R. E. Dunmore, J. R. Hopkins, R. T. Lidster, J. D. Lee, M. J. Evans, A. R. Rickard, A. C. Lewis & J. F. Hamilton. (2015) Diesel-related hydrocarbons can dominate gas phase reactive carbon in megacities. Atmospheric Chemistry and Physics 15:17, pages 9983-9996.
Crossref
J. Coates & T. M. Butler. (2015) A comparison of chemical mechanisms using tagged ozone production potential (TOPP) analysis. Atmospheric Chemistry and Physics 15:15, pages 8795-8808.
Crossref
C. S. Malley, C. F. Braban, P. Dumitrean, J. N. Cape & M. R. Heal. (2015) The impact of speciated VOCs on regional ozone increment derived from measurements at the UK EMEP supersites between 1999 and 2012. Atmospheric Chemistry and Physics 15:14, pages 8361-8380.
Crossref
A. Mellouki, T. J. Wallington & J. Chen. (2015) Atmospheric Chemistry of Oxygenated Volatile Organic Compounds: Impacts on Air Quality and Climate. Chemical Reviews 115:10, pages 3984-4014.
Crossref
Marco Piumetti, Debora Fino & Nunzio Russo. (2015) Mesoporous manganese oxides prepared by solution combustion synthesis as catalysts for the total oxidation of VOCs. Applied Catalysis B: Environmental 163, pages 277-287.
Crossref
Z. H. Ling, H. Guo, S. H. M. Lam, S. M. Saunders & T. Wang. (2014) Atmospheric photochemical reactivity and ozone production at two sites in Hong Kong: Application of a Master Chemical Mechanism-photochemical box model. Journal of Geophysical Research: Atmospheres 119:17, pages 10567-10582.
Crossref
D.J. Luecken, W.T. Hutzell, M.L. Strum & G.A. Pouliot. (2012) Regional sources of atmospheric formaldehyde and acetaldehyde, and implications for atmospheric modeling. Atmospheric Environment 47, pages 477-490.
Crossref
W.T. Hutzell, D.J. Luecken, K.W. Appel & W.P.L. Carter. (2012) Interpreting predictions from the SAPRC07 mechanism based on regional and continental simulations. Atmospheric Environment 46, pages 417-429.
Crossref
T.M. Butler, M.G. Lawrence, D. Taraborrelli & J. Lelieveld. (2011) Multi-day ozone production potential of volatile organic compounds calculated with a tagging approach. Atmospheric Environment 45:24, pages 4082-4090.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.