2,867
Views
14
CrossRef citations to date
0
Altmetric
Supplement 1, 2013

The antioxidant level of Alaska's wild berries: high, higher and highest

, &
Article: 21188 | Published online: 05 Aug 2013

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (1)

Jerry Hupp, Michael Brubaker, Kira Wilkinson & Jennifer Williamson. (2015) How are your berries? Perspectives of Alaska's environmental managers on trends in wild berry abundance. International Journal of Circumpolar Health 74:1.
Read now

Articles from other publishers (13)

Yun Xiao Zhou, Xu Yuan, Xiao Fen Hu, Shan Shan Yang, Sheng Wei Zhong, Ting Yu Yang, Guo Tong Zhao, Yi Jie Jiang & Yong Li. (2022) Changes of oxidant-antioxidant parameters in small intestines from rabbits infected with E. intestinalis and E. magna. World Rabbit Science 30:4, pages 287-293.
Crossref
Selena Ahmed, Teresa Warne, Alyssa Stewart, Carmen Byker Shanks & Virgil Dupuis. (2022) Role of Wild Food Environments for Cultural Identity, Food Security, and Dietary Quality in a Rural American State. Frontiers in Sustainable Food Systems 6.
Crossref
Riitta Ryyti, Antti Pemmari, Rainer Peltola, Mari Hämäläinen & Eeva Moilanen. (2021) Effects of Lingonberry (Vaccinium vitis-idaea L.) Supplementation on Hepatic Gene Expression in High-Fat Diet Fed Mice. Nutrients 13:11, pages 3693.
Crossref
Vincent F. Lembo & Cheryl A. Frye. 2021. Antioxidants - Benefits, Sources, Mechanisms of Action. Antioxidants - Benefits, Sources, Mechanisms of Action.
Katarzyna Kowalska. (2021) Lingonberry (Vaccinium vitis-idaea L.) Fruit as a Source of Bioactive Compounds with Health-Promoting Effects—A Review. International Journal of Molecular Sciences 22:10, pages 5126.
Crossref
María José Aliaño-González, José Antonio Jarillo, Ceferino Carrera, Marta Ferreiro-González, José Ángel Álvarez, Miguel Palma, Jesús Ayuso, Gerardo F. Barbero & Estrella Espada-Bellido. (2020) Optimization of a Novel Method Based on Ultrasound-Assisted Extraction for the Quantification of Anthocyanins and Total Phenolic Compounds in Blueberry Samples (Vaccinium corymbosum L.). Foods 9:12, pages 1763.
Crossref
Michelle Debnath-Canning, Scott Unruh, Poorva Vyas, Noriko Daneshtalab, Abir U. Igamberdiev & John T. Weber. (2020) Fruits and leaves from wild blueberry plants contain diverse polyphenols and decrease neuroinflammatory responses in microglia. Journal of Functional Foods 68, pages 103906.
Crossref
Yan Li, Jie Li, Sai-Jun Lin, Zui-Su Yang & Huo-Xi Jin. (2019) Preparation of Antioxidant Peptide by Microwave- Assisted Hydrolysis of Collagen and Its Protective Effect Against H2O2-Induced Damage of RAW264.7 Cells. Marine Drugs 17:11, pages 642.
Crossref
Zoriţa Diaconeasa, Cristian I. Iuhas, Huseyin Ayvaz, Dumitriţa Rugină, Andreea Stanilă, Francisc Dulf, Andrea Bunea, Sonia Ancuța Socaci, Carmen Socaciu & Adela Pintea. (2019) Phytochemical Characterization of Commercial Processed Blueberry, Blackberry, Blackcurrant, Cranberry, and Raspberry and Their Antioxidant Activity. Antioxidants 8:11, pages 540.
Crossref
Malabika Maulik, Swarup Mitra, Skyler Hunter, Moriah Hunstiger, S. Ryan Oliver, Abel Bult-Ito & Barbara E. Taylor. (2018) Sir-2.1 mediated attenuation of α-synuclein expression by Alaskan bog blueberry polyphenols in a transgenic model of Caenorhabditis elegans. Scientific Reports 8:1.
Crossref
Jeong Kim, Yan Wang, Yeong Song, Zia Uddin, Zuo Li, Yeong Ban & Ki Park. (2018) Antioxidant Activities of Phenolic Metabolites from Flemingia philippinensis Merr. et Rolfe and Their Application to DNA Damage Protection. Molecules 23:4, pages 816.
Crossref
Courtney Scerbak, Elena M. Vayndorf, Alicia Hernandez, Colin McGill & Barbara E. Taylor. (2016) Mechanosensory Neuron Aging: Differential Trajectories with Lifespan-Extending Alaskan Berry and Fungal Treatments in Caenorhabditis elegans. Frontiers in Aging Neuroscience 8.
Crossref
Teeradate Kongpichitchoke, Jue-Liang Hsu & Tzou-Chi Huang. (2015) Number of Hydroxyl Groups on the B-Ring of Flavonoids Affects Their Antioxidant Activity and Interaction with Phorbol Ester Binding Site of PKCδ C1B Domain: In Vitro and in Silico Studies. Journal of Agricultural and Food Chemistry 63:18, pages 4580-4586.
Crossref