731
Views
29
CrossRef citations to date
0
Altmetric
Article Addendum

Structural features of plant subtilases

, &
Pages 180-183 | Received 23 Dec 2009, Accepted 23 Dec 2009, Published online: 01 Feb 2010

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (1)

Sharmila Narayanan, Pallab Sanpui, Lingaraj Sahoo & Siddhartha Sankar Ghosh. (2017) Tobacco phytaspase: Successful expression in a heterologous system. Bioengineered 8:5, pages 457-461.
Read now

Articles from other publishers (28)

Xiaodong Wang, Yanting Zhang, Dianjun Xiang, Meng Wang, Weiwei Zhang, Zhigang Li & Peng Liu. (2023) Genome-Wide Identification and Characterization of the SBT Gene Family in maize and Its Expression in the Various tissues. Plant Molecular Biology Reporter.
Crossref
Quancan Hou, Linlin Wang, Yuchen Qi, Tingwei Yan, Fan Zhang, Wei Zhao & Xiangyuan Wan. (2023) A systematic analysis of the subtilase gene family and expression and subcellular localization investigation of anther-specific members in maize. Plant Physiology and Biochemistry 203, pages 108041.
Crossref
Hongwei Cui, Guyi Zhou, Hongqiang Ruan, Jun Zhao, Agula Hasi & Na Zong. (2023) Genome-Wide Identification and Analysis of the Maize Serine Peptidase S8 Family Genes in Response to Drought at Seedling Stage. Plants 12:2, pages 369.
Crossref
Emanoelly Roberta de Carvalho Morais, Nathalia Maira Cabral de Medeiros, Francinaldo Leite da Silva, Isabel Andrade Lopes de Sousa, Izamara Gesiele Bezerra de Oliveira, Carlos Henrique Salvino Gadelha Meneses & Katia Castanho Scortecci. (2022) Redox homeostasis at SAM: a new role of HINT protein. Planta 257:1.
Crossref
Hyun Ju Jung, Suk Won Choi, Kyung-Hwan Boo, Jee-Eun Kim, Young Kyoung Oh, Min Kyun Han, Moon Young Ryu, Chang Woo Lee, Christian Møller, Pratik Shah, Gu Min Kim, Woorim Yang, Seok Keun Cho & Seong Wook Yang. (2022) HYL1-CLEAVAGE SUBTILASE 1 (HCS1) suppresses miRNA biogenesis in response to light-to-dark transition. Proceedings of the National Academy of Sciences 119:6.
Crossref
Luona Xu, Hongkai Wang, Chengqi Zhang, Jinli Wang, Ahai Chen, Yun Chen & Zhonghua Ma. (2020) System-wide characterization of subtilases reveals that subtilisin-like protease FgPrb1 of Fusarium graminearum regulates fungal development and virulence. Fungal Genetics and Biology 144, pages 103449.
Crossref
Yan Xu, Sibo Wang, Linzhou Li, Sunil Kumar Sahu, Morten Petersen, Xin Liu, Michael Melkonian, Gengyun Zhang & Huan Liu. (2019) Molecular evidence for origin, diversification and ancient gene duplication of plant subtilases (SBTs). Scientific Reports 9:1.
Crossref
Anastasia Balakireva, Andrei Deviatkin, Victor Zgoda, Maxim Kartashov, Natalia Zhemchuzhina, Vitaly Dzhavakhiya, Andrey Golovin & Andrey ZamyatninJr.Jr.. (2018) Proteomics Analysis Reveals That Caspase-Like and Metacaspase-Like Activities Are Dispensable for Activation of Proteases Involved in Early Response to Biotic Stress in Triticum aestivum L.. International Journal of Molecular Sciences 19:12, pages 3991.
Crossref
Samuel Morales-Navarro, Ricardo Pérez-Díaz, Alfonso Ortega, Alberto de Marcos, Montaña Mena, Carmen Fenoll, Enrique González-Villanueva & Simón Ruiz-Lara. (2018) Overexpression of a SDD1-Like Gene From Wild Tomato Decreases Stomatal Density and Enhances Dehydration Avoidance in Arabidopsis and Cultivated Tomato. Frontiers in Plant Science 9.
Crossref
Friederike Grosse-Holz, Steven Kelly, Svenja Blaskowski, Farnusch Kaschani, Markus Kaiser & Renier A.L. van der Hoorn. (2018) The transcriptome, extracellular proteome and active secretome of agroinfiltrated Nicotiana benthamiana uncover a large, diverse protease repertoire . Plant Biotechnology Journal 16:5, pages 1068-1084.
Crossref
Andreas Schaller, Annick Stintzi, Susana Rivas, Irene Serrano, Nina V. Chichkova, Andrey B. Vartapetian, Dana Martínez, Juan J. Guiamét, Daniela J. Sueldo, Renier A. L. van der Hoorn, Vicente Ramírez & Pablo Vera. (2018) From structure to function - a family portrait of plant subtilases. New Phytologist 218:3, pages 901-915.
Crossref
Joana Figueiredo, Marta Sousa Silva & Andreia Figueiredo. (2018) Subtilisin-like proteases in plant defence: the past, the present and beyond. Molecular Plant Pathology 19:4, pages 1017-1028.
Crossref
Yihang Wang, Luyao Zhao, Xiaoze Xie, Jianhua Huang, Dandan Li, Wenjing Chen & Aiyi Zhu. (2018) Transcriptomic responses in Neolitsea sericea leaves under acute drought stress. Acta Physiologiae Plantarum 40:2.
Crossref
Joana Figueiredo, Gonçalo J. Costa, Marisa Maia, Octávio S. Paulo, Rui Malhó, Marta Sousa Silva & Andreia Figueiredo. (2016) Revisiting Vitis vinifera Subtilase Gene Family: A Possible Role in Grapevine Resistance against Plasmopara viticola. Frontiers in Plant Science 7.
Crossref
Michael Meyer, Sebastian Leptihn, Max Welz & Andreas Schaller. (2016) Functional Characterization of Propeptides in Plant Subtilases as Intramolecular Chaperones and Inhibitors of the Mature Protease. Journal of Biological Chemistry 291:37, pages 19449-19461.
Crossref
Michael Meyer, Franziska Huttenlocher, Anna Cedzich, Susanne Procopio, Jasper Stroeder, Corinne Pau-Roblot, Michelle Lequart-Pillon, Jérôme Pelloux, Annick Stintzi & Andreas Schaller. (2016) The subtilisin-like protease SBT3 contributes to insect resistance in tomato. Journal of Experimental Botany 67:14, pages 4325-4338.
Crossref
Tim Wendlandt, Martin Moche, Dörte Becher & Christine Stöhr. (2016) A SDD1-like subtilase is exuded by tobacco roots. Functional Plant Biology 43:2, pages 141.
Crossref
Dana E. Martinez, Maria L. Borniego, Natalia Battchikova, Eva-Mari Aro, Esa Tyystjärvi & Juan J. Guiamét. (2015) SASP, a Senescence-Associated Subtilisin Protease, is involved in reproductive development and determination of silique number in Arabidopsis. Journal of Experimental Botany 66:1, pages 161-174.
Crossref
Jun Cao, Xi Han, Ticao Zhang, Yongping Yang, Jinling Huang & Xiangyang Hu. (2014) Genome-wide and molecular evolution analysis of the subtilase gene family in Vitis vinifera. BMC Genomics 15:1.
Crossref
Fabien Sénéchal, Lucile Graff, Ogier Surcouf, Paulo Marcelo, Catherine Rayon, Sophie Bouton, Alain Mareck, Gregory Mouille, Annick Stintzi, Herman Höfte, Patrice Lerouge, Andreas Schaller & Jérôme Pelloux. (2014) Arabidopsis PECTIN METHYLESTERASE17 is co-expressed with and processed by SBT3.5, a subtilisin-like serine protease. Annals of Botany 114:6, pages 1161-1175.
Crossref
Chen Chen, Hao Chen, You-Shun Lin, Jin-Bo Shen, Jun-Xiang Shan, Peng Qi, Min Shi, Mei-Zhen Zhu, Xue-Hui Huang, Qi Feng, Bin Han, Liwen Jiang, Ji-Ping Gao & Hong-Xuan Lin. (2014) A two-locus interaction causes interspecific hybrid weakness in rice. Nature Communications 5:1.
Crossref
Vinicio Danilo Armijos Jaramillo, Walter Alberto Vargas, Serenella Ana Sukno & Michael R. Thon. (2013) Horizontal Transfer of a Subtilisin Gene from Plants into an Ancestor of the Plant Pathogenic Fungal Genus Colletotrichum. PLoS ONE 8:3, pages e59078.
Crossref
Andreas Schaller. 2013. Handbook of Proteolytic Enzymes. Handbook of Proteolytic Enzymes 3247 3254 .
Andreas Schaller, Annick Stintzi & Lucile Graff. (2012) Subtilases - versatile tools for protein turnover, plant development, and interactions with the environment. Physiologia Plantarum 145:1, pages 52-66.
Crossref
Anna Tan-Wilson, Basel Bandak & Moses Prabu-Jeyabalan. (2012) The PA domain is crucial for determining optimum substrate length for soybean protease C1: Structure and kinetics correlate with molecular function. Plant Physiology and Biochemistry 53, pages 27-32.
Crossref
Faïza Meriem Benabdoun, Mathish Nambiar-Veetil, Leandro Imanishi, Sergio Svistoonoff, Nadia Ykhlef, Hassen Gherbi & Claudine Franche. (2011) Composite Actinorhizal Plants with Transgenic Roots for the Study of Symbiotic Associations with Frankia . Journal of Botany 2011, pages 1-8.
Crossref
Lucía Feijoo-Siota & Tomás G. Villa. (2010) Native and Biotechnologically Engineered Plant Proteases with Industrial Applications. Food and Bioprocess Technology 4:6, pages 1066-1088.
Crossref
Jeffrey P. Bocock, Stephanie Carmicle, Mayukh Sircar & Ann H. Erickson. (2010) Trafficking and proteolytic processing of RNF13, a model PA‐TM‐RING family endosomal membrane ubiquitin ligase. The FEBS Journal 278:1, pages 69-77.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.