368
Views
18
CrossRef citations to date
0
Altmetric
Pharmaceutical Analysis

Electrochemical Determination of Methamphetamine in Human Plasma on a Nanoceria Nanoparticle Decorated Reduced Graphene Oxide (rGO) Glassy Carbon Electrode (GCE)

, , &
Pages 2509-2522 | Received 30 Sep 2020, Accepted 09 Jan 2021, Published online: 01 Feb 2021
 

Abstract

Methamphetamine is an addictive and illegal psychostimulant drug. Due to its simple synthesis, it is widely accessible and abused. Long-term consumption affects the user’s body. Hence, its determination is of great importance. Its oxidation on electrode surfaces is difficult and requires a suitable modifier. In this work, cerium oxide nanoparticles (nanoceria) decorated on reduced graphene oxide were utilized as the electrode modifier to improve the electrochemical response. Decoration of nanoceria in reduced graphene oxide enhances the stability of reduced graphene oxide on the electrode surface and avoiding π-π stacking and the formation of a graphite structure. In addition, the agglomeration of nanoceria decorated on the reduced graphene oxide is decreased. The optimum ratio of cerium oxide-reduced graphene oxide composite provided a synergistic catalytic effect upon the methamphetamine signal. An enhancement of the methamphetamine oxidation peak on the modified electrode at +0.9 V in Britton-Robinson buffer was observed by cyclic voltammetry at pH 10.0 in comparison with a bare electrode. Square wave voltammetry (SWV) was used for analysis. Under the optimized conditions, the linear dynamic range and limit of detection for the reported electrode were from 25.0 to 166.6 µM and 8.7 µM. The determination of methamphetamine in plasma indicated no significant matrix interferences.

Conflicts of interest

The authors declare that they have no conflicts of interest.

Additional information

Funding

This study was financially supported by University of Kashan and Center of Excellence in Electrochemistry, University of Tehran.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 768.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.