Publication Cover
Applicable Analysis
An International Journal
Volume 102, 2023 - Issue 10
112
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Parameter space study of optimal scale-dependent weights in TV image denoising

&
Pages 2651-2675 | Received 10 Jun 2021, Accepted 17 Jan 2022, Published online: 03 Feb 2022
 

Abstract

We investigate the choice of finite-dimensional parameter spaces within a bilevel optimization framework for selecting scale-dependent weights in total variation image denoising with non-uniform noise. Due to the pointwise box constraints on the parameter function, we prove existence of Lagrange multipliers in low regularity spaces, and derive a first-order optimality system. To cope with the difficulties related to the lack of regularity, a Moreau-Yosida regularization is introduced and convergence of the regularized optimal parameters towards the optimal weight for the original problem is verified. For each regularized bilevel problem a second-order quasi-Newton algorithm is proposed, together with a semismooth Newton scheme for solving the lower-level problem. Finally, several numerical tests are carried out to compare the different parameter space choices and draw some conclusions.

2020 Mathematics Subject Classifications:

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,361.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.