171
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Numerical Simulations on Autoignition Propagation Modes under Reciprocating Engine-relevant Conditions

, , , , &
Pages 2241-2258 | Received 05 Jul 2019, Accepted 17 Feb 2020, Published online: 23 Feb 2020
 

ABSTRACT

Previous studies on autoignition propagation modes were often performed based on constant-volume configuration. However, the reactant mixture in reciprocating engines always experiences significant variable volume and ever-changing thermodynamic conditions, which may affect autoignition initiation and subsequent development during knocking combustion. In this study, the autoignition reaction wave propagation induced by thermal stratifications was investigated numerically, with addressing the role of reciprocating piston motion and primary flame compression. Compression heating was considered to emulate the compression and expansion caused by reciprocating piston motion, and different combustion boundary conditions and fuel properties were performed to investigate the impact on autoignition propagation modes. The results of hydrogen cases show that similar to constant-volume configurations, various autoignition propagation modes (including thermal explosion, detonation, and deflagration) can be observed. However, the normalized temperature gradients demarcating different autoignition propagation modes change significantly under variable thermodynamic conditions of reciprocating engines. Such an influence can also be embodied in engine combustion phasing. It is found that the intense autoignition involving detonation development prefers to occurring around the Top Dead Center with higher chemical reactivity and energy density. Furthermore, similar studies were further carried out for isooctane and the significant influence from reciprocating piston motion is still observed. Besides, it is found that almost all the autoignition events induced by thermal stratifications develop into deflagration rather than detonation for isooctane. The underlying reasons can be elucidated through the detonation peninsular diagrams for different fuels.

Additional information

Funding

This work was supported by the National Natural Science Foundation of China [51706152,51825603];Natural Science Foundation of Tianjin City [18JCQNJC07500];National Key Research and Development Program of China [2017YFE0102800].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,493.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.