120
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Reduced Pressure Effect on The Centerline Plume Temperatures of Elevated n-Heptane Fires in an Aircraft Cargo Compartment

ORCID Icon, , &
Pages 2223-2239 | Received 12 Sep 2021, Accepted 26 Nov 2021, Published online: 30 Dec 2021
 

ABSTRACT

This paper investigates the influence of the reduced pressure on the temperature profile of the weak and strong fire plumes by elevating n-Heptane fires. A series of elevated n-Heptane fire tests were conducted in a full-scale simulated Boeing 737–700 aircraft cargo compartment at 70 kPa, 80 kPa, 90 kPa and 100 kPa. The experimental results show that both the centerline temperature rise and the maximum ceiling temperature rise of weak and strong plumes at reduced pressures can be represented in three-region law similar to McCaffrey plume model. Thereinto, the weak plume temperature increases with the decrease of the atmosphere pressure owing to the low air entrainment, while the strong plume temperature in the continuous flame region decreases at reduced pressure, because the hot thermal flow of the strong plume impinges the ceiling violently causing the more air entrainment. The maximum ceiling temperature at the reduced pressure changes as similar with the centerline temperature driven by strong plumes. By introducing the reduced pressure coefficients, new correlations for predicting the centerline temperature and maximum ceiling temperature induced by weak and strong plumes are proposed with wider application range.

Highlights

  • Temperature profiles of weak/strong thermal n-Heptane flows at various pressures.

  • Proposed reduced pressure coefficients for plume temperature empirical equations.

  • Modified three-region correlations to predict plume temperature at low pressure.

  • Modified correlations of maximum ceiling temperature fit for low pressure.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Nomenclature

Greek symbols

Subscript

Correction Statement

This article has been republished with minor changes. These changes do not impact the academic content of the article.

References

  • Blevins, L. G. 1999. Behavior of bare and aspirated thermocouples in compartment fires. Proceedings of the 33rd National Heat Transfer Conference, Albuquerque, New Mexico.
  • Chen, L., F. Tang, Q. Wang, and L. J. Li. 2018. Experimental study on temperature distribution of ceiling jet in tunnel fires under natural ventilation. Procedia Eng. 211:674–680. doi:10.1016/j.proeng.2017.12.063.
  • Fan, C. G., J. Q. Zhang, K. J. Zhu, and K. Y. Li. 2017. An experimental study of temperature and heat flux in a channel with an asymmetric thermal plume. Appl. Therm. Eng. 113:1128–1136. doi:10.1016/j.applthermaleng.2016.11.017.
  • Fang, J., R. Tu, J. F. Guan, J. J. Wang, and Y. M. Zhang. 2011. Influence of low air pressure on combustion characteristics and flame pulsation frequency of pool fires. Fuel 90 (8):2760–2766. doi:10.1016/j.fuel.2011.03.035.
  • Gao, Z. H., J. Ji, H. X. Wan, J. P. Zhu, and J. H. Sun. 2017. Experimental investigation on transverse ceiling flame length and temperature distribution of sidewall confined tunnel fire. Fire Saf. J. 91:371–379. doi:10.1016/j.firesaf.2017.04.033.
  • Heskestad, G. 1983. Virtual origins of fire plumes. Fire Saf. J. 5 (2):109–114. doi:10.1016/0379-7112(83)90003-6.
  • Li, C., R. Yang, Y. N. Yao, Z. X. Tao, and H. Zhang. 2018. Evolution of pool fire plume characteristics during the depressurization process of an aircraft cargo compartment. J. Fire Sci. 36 (4):362–375. doi:10.1177/0734904118784735.
  • Li, C., Y. N. Yao, Z. X. Tao, R. Yang, and H. Zhang. 2017. Influence of depressurized environment on the fire behaviour in a dynamic pressure cabin. Appl. Therm. Eng. 125:972–977. doi:10.1016/j.applthermaleng.2017.07.088.
  • Liu, Q. Y., Q. J. Ma, H. Zhang, R. Yang, D. Wei, and C. H. Lin. 2017. Experimental study on n-heptane pool fire behavior under dynamic pressure in an altitude chamber. J. Therm. Anal. Calorim. 128 (2):1151–1163. doi:10.1007/s10973-016-6008-3.
  • McCaffrey, B. J. 1979. Purely Buoyant diffusion flames: some experimental results doi:10.6028/nbs.ir.79-1910.
  • Moffat, R. J. 1988. Describing the uncertainties in experimental results. Exp. Therm. Fluid Sci. 1 (1):3–17. doi:10.1016/0894-1777(88)90043-X.
  • Quintiere, J. G., and B. S. Grove 1998. A unified analysis for fire plumes. 27( 2):2757–2766 doi:10.1016/S0082-0784(98)80132-X.
  • Tang, F., L. H. Hu, Z. W. Qiu, and Q. Wang. 2014. A global model of plume axial temperature profile transition from axisymmetric to line-source pool fires in normal and reduced pressures. Fuel 130:211–214. doi:10.1016/j.fuel.2014.04.053.
  • Tao, Z. X., R. Yang, C. Li, Y. N. Yao, P. Zhang, and H. Zhang. 2019. An experimental study on fire behavior of an inclined ceiling jet in a low-pressure environment. Int. J. Therm. Sci. 138:487–495. doi:10.1016/j.ijthermalsci.2019.01.023.
  • Tu, R., J. Fang, Y. M. Zhang, J. Zhang, and Y. Zeng. 2013. Effects of low air pressure on radiation-controlled rectangular ethanol and n-heptane pool fires. Pro. Combust. Inst 34 (2):2591–2598. doi:10.1016/j.proci.2012.06.036.
  • Wang, J., K. H. Lu, S. Lu, and H. J. Zhang. 2017a. Experimental study on ceiling temperature profile of sidewall fires at reduced pressure in an aircraft cargo compartment. Exp. Therm. Fluid Sci. 82:326–332. doi:10.1016/j.expthermflusci.2016.11.030.
  • Wang, J., S. Lu, Y. Guan, S. M. Lo, and H. P. Zhang. 2015a. Experiment investigation on the influence of low pressure on ceiling temperature profile in aircraft cargo compartment fires. Appl. Therm. Eng. 89:526–533. doi:10.1016/j.applthermaleng.2015.06.021.
  • Wang, J., S. Lu, Y. Hu, H. P. Zhang, and S. M. Lo. 2015b. Early stage of elevated fires in an aircraft cargo compartment: A full scale experimental investigation. Fire Technol. 51 (5):1129–1147. doi:10.1007/s10694-015-0475-0.
  • Wang, J., Y. Y. Pan, K. H. Lu, W. S. Chen, and H. J. Zhang. 2017b. Investigation on the CO concentration decay profile and spread velocity of a ceiling jet at reduced pressure in aircraft cargo compartment fires. Appl. Therm. Eng. 127:1246–1251. doi:10.1016/j.applthermaleng.2017.08.140.
  • Wang, J., Y. Y. Pan, S. Lu, K. H. Lu, and W. S. Chen. 2017c. CO concentration decay profile and ceiling jet entrainment in aircraft cargo compartment fires at reduced pressures. Appl. Therm. Eng. 110:772–778. doi:10.1016/j.applthermaleng.2016.08.213.
  • Yin, J. S., W. Yao, Q. Y. Liu, Z. H. Zhou, N. Wu, H. Zhang, C. H. Lin, T. Wu, and O. C. Meier. 2013. Experimental study of n-Heptane pool fire behavior in an altitude chamber. Int. J. Heat Mass Transf. 62:543–552. doi:10.1016/j.ijheatmasstransfer.2013.02.072.
  • Zhang, X. C., L. H. Hu, W. Zhu, X. L. Zhang, and L. Z. Yang. 2014. Axial temperature profile in buoyant plume of rectangular source fuel jet fire in normal- and a sub-atmospheric pressure. Fuel 134:455–459. doi:10.1016/j.fuel.2014.05.046.
  • Zhou, T. N., Y. Zhou, C. G. Fan, and J. Wang. 2020. Experimental study on temperature distribution beneath an arced tunnel ceiling with various fire locations. Tunn. Undergr. Space Technol. 98. doi:10.1016/j.tust.2020.103344.
  • Zhou, Z. H., Y. Wei, H. H. Li, R. Yuen, and W. Jian. 2014. Experimental analysis of low air pressure influences on fire plumes. Int. J. Heat Mass Transf. 70:578–585. doi:10.1016/j.ijheatmasstransfer.2013.11.042.
  • Zhu, P., Z. X. Tao, C. Li, Q. Y. Liu, Q. Shao, R. Yang, and H. Zhang. 2019. Experimental study on the burning rates of Ethanol-Gasoline blends pool fires under low ambient pressure. Fuel 252:304–315. doi:10.1016/j.fuel.2019.04.118.

Correction Statement

This article has been republished with minor changes. These changes do not impact the academic content of the article.

Additional information

Funding

This study was supported by National Natural Science Foundation of China under Grant No. 51806156 and 52076199; Hubei Provincial Key Research and Development Program under Grant No. Science and Technology Department of Hubei Province 2020BCB072; Project of Natural Science Foundation of Hubei Province under Grant No. 2018CFB226.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,493.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.