168
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effects of Radiation Model on Soot Modeling in Laminar Coflow Diffusion Flames at Elevated Pressure

&
Pages 3494-3512 | Received 04 May 2023, Accepted 21 May 2023, Published online: 13 Aug 2023
 

ABSTRACT

Detailed numerical simulations of C2H4/Air coflow laminar sooting flames at atmospheric and elevated pressures are performed with fully coupled flow, gas-phase reactions, soot dynamics, and nongray radiative heat transfer. The soot dynamics is modeled using a hybrid method of moments combined with a polycyclic aromatic hydrocarbon (PAH) mechanism. Nongray radiative heat transfer by CO2, H2O, and soot is calculated using different methods to study the effect of radiation model on the predictions. The discrete ordinates radiation model (DOM) and P1 radiation model are compared. Three radiative property models with different accuracy and efficiency are included: a) full-spectrum correlated-k distribution (FSCK) model, b) weighted sum of gray gas model with original parameters (WSGG-Smith), and c) WSGG model with optimized parameters for variable mole ratios and elevated pressure (WSGG-SK). The optically thin approximation (OTA) model is also compared to a simple baseline case. The results show that the temperature and soot volume fraction predicted by the DOM combined with the WSGG-SK model are consistent with the FSCK model, with errors less than 2%. When the pressure increases to 8 bar, errors of P1 and OTA models increase significantly, the maximum temperatures predicted by the P1 and OTA models have errors of 36 K and 63 K, and the relative errors of the peak soot volume fraction are 18% and 24%, respectively.

Acknowledgements

The work was sponsored by the King Abdullah University of Science and Technology (KAUST). Computational resources were provided by the KAUST Supercomputing Laboratory (KSL).

Disclosure statement

No potential conflict of interest was reported by the author(s).

Supplementary material

Supplemental data for this article can be accessed online at https://doi.org/10.1080/00102202.2023.2246201

Additional information

Funding

The work was supported by the King Abdullah University of Science and Technology.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,493.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.