417
Views
14
CrossRef citations to date
0
Altmetric
Articles

Evaluating the Impact of Combined Application of Biochar and Compost on Hydro-physical Properties of Loamy Sand Soil

, &
Pages 2442-2456 | Received 15 Mar 2019, Accepted 10 Sep 2019, Published online: 22 Sep 2019
 

ABSTRACT

Biochar, compost and their combination are important organic amendment materials for improving the hydro-physical properties of sandy soils. Series of soil columns experiments were conducted for investigating the application effects of date palm biochar and compost on evaporation, moisture distribution, infiltration, sorptivity (Sp), saturated hydraulic conductivity (Ksat) and water holding capacity (WHC) at application rates of 1%, 2%, 3% and 4% (10, 20, 30 and 40 g kg−1). The columns were filled manually with air-dried soil with 35 cm depth and the thickness of surface amended layer was 10 cm (T10) and 20 cm (T20) from soil surface at bulk density of 1400 kg m−3. The results showed that the behavior of soil moisture distribution was influenced by application of biochar, compost and biochar-compost mixture. Moreover, in the amended layer T10, applying biochar at rate of 1%, 2%, 3% and 4% reduced significantly cumulative evaporation by 5.8%, 10.8%, 12.8% and 16.1%, respectively. Meanwhile, the reduction for the biochar-compost mixture at application rates of 1%, 2%, 3% and 4% was 10%, 12.2%, 14.5% and 20%, respectively. In layer T20, applying biochar at rate of 1%, 2%, 3% and 4% reduced cumulative evaporation by 10.24%, 13.0%, 18.3% and 21.5% but this reduction amounted to 18.2%, 21%, 23% and 24% for the biochar-compost mixture, respectively. It was generally observed that the highest application rate (4%) for applied amendments was the most effective impact on Sp, Ksat and WHC compared with other rates.

Acknowledgments

The authors sincerely thank King Saud University, Deanship of Scientific Research, College of Food and Agricultural Sciences, Research Center for supporting this research.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 408.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.