349
Views
5
CrossRef citations to date
0
Altmetric
Articles

A study on segmentation and refinement of key human body parts by integrating manual measurements

, , &
Pages 60-77 | Received 29 Jan 2021, Accepted 26 Jul 2021, Published online: 12 Aug 2021
 

Abstract

Optimal ergonomic design for consumer goods (such as garments and furniture) cannot be perfectly realised because of imprecise interactions between products and human models. In this paper, we propose a new body classification method that integrates human skeleton features, expert experience, manual measurement methods, and statistical analysis (principal component analysis and K-means clustering). Taking the upper body of young males as an example, the proposed method enables the classification of upper bodies into a number of levels at three key body segments (the arm root [seven levels], the shoulder [five levels], and the torso [below the shoulder, eight levels]). From several experiments, we found that the proposed method can lead to more accurate results than the classical classification methods based on three-dimensional (3 D) human model and can provide semantic knowledge of human body shapes. This includes interpretations of the classification results at these three body segments and key feature point positions, as determined by skeleton features and expert experience. Quantitative analysis also demonstrates that the reconstruction errors satisfy the requirements of garment design and production.

Practitioner summary The acquisition and classification of anthropometric data constitute the basis of ergonomic design. This paper presents a new method for body classification that leads to more accurate results than classical classification methods (which are based on human body models). We also provide semantic knowledge about the shape of human body. The proposed method can also be extended to 3 D body modelling and to the design of other consumer products, such as furniture, seats, and cars.

Abbreviations: PCA: principal component analysis; KMO: Kaiser-Meyer-Olkin; ANOVA: analysis of variance; 3D: three-dimensional; 2D: two-dimensional; ISO: International Standardisation Organisation; BFB: body-feature-based

Disclosure statement

The authors report no financial interest or benefit derived from this work.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 797.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.