354
Views
2
CrossRef citations to date
0
Altmetric
Articles

Evaluation of vertical and multi-axial suspension seats for reducing vertical-dominant and multi-axial whole body vibration and associated neck and low back joint torque and muscle activity

ORCID Icon, , , &
Pages 1696-1710 | Received 15 Oct 2021, Accepted 28 Feb 2022, Published online: 16 Mar 2022
 

Abstract

The primary aim of this laboratory-based human subject study was to evaluate the biomechanical loading associated with mining vehicles’ multi-axial whole body vibration (WBV) by comparing joint torque and muscle activity in the neck and low back during three vibration conditions: mining vehicles’ multi-axial, on-road vehicles’ vertical-dominant, and no vibration. Moreover, the secondary aim was to determine the efficacy of a vertical passive air suspension and a prototype multi-axial active suspension seat in reducing WBV exposures and associated biomechanical loading measures. The peak joint torque and muscle activity in the neck and low back were higher when exposed to multi-axial vibration compared to the vertical-dominant or no vibration condition. When comparing the two suspension seats, there were limited differences in WBV, joint torque, and muscle activity. These results indicate that there is a need to develop more effective engineering controls to lower exposures to multi-axial WBV and related biomechanical loading.

Practitioner Summary: This study found that mining vehicles’ multi-axial WBV can increase biomechanical loading in the neck and back more so than on-road vehicles’ vertical-dominant WBV. While a newly-developed multi-axial active suspension seat slightly reduced the overall WBV exposures, the results indicate that more effective engineering controls should be developed.

Abbreviation: APDF: amplitude probability density function; Aw: weighted average vibration; BMI: body mass index; C7: The 7th cervical vertebra; EMG: electromyography; ES: erector spinae; IRB: institutional review board; ISO: International Organization for Standardization; L5/S1: the fifth lumbar vertebra (L5)/the first sacral vertebra(S1); MSDs: musculoskeletal disorders; MVC: maximum voluntary contraction; PSD: power spectral density; RVC: reference voluntary contraction; SCM: sternocleidomastoid; SD: standard deviation; SPL: splenius capitis; TRAP: trapezius; VDV: vibration dose value; WBV: whole body vibration

Acknowledgements

The authors would like to thank Bose Corporation for providing their technical support and testing seats during this research project. The authors also thank the following people for assisting data collection: Stephanie Fitch, James Wilson, Ashley Chan, and David Ha at Oregon State University.

Disclosure statement

The authors declare no conflict of interest.

Additional information

Funding

This research was supported by a research grant from Alpha Foundation (AFC316-61).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 797.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.