71
Views
0
CrossRef citations to date
0
Altmetric
Articles

Optimisation of absorption power cycle for generator temperatures 60–210°C with LiBr water as a working fluid

ORCID Icon &
Pages 243-255 | Published online: 02 Sep 2021
 

ABSTRACT

In this work, the absorption power cycle (APC) and reheated absorption power cycle (RHAPC) have been optimised based on the LiBr concentration in the generator and absorber for a wide range of operating temperatures of the generator and absorber. The mathematical model and simulation of the APC and RHAPC are done by using the highly accurate thermodynamic correlations available in the literature. Sensitivity analysis of the exergy and thermal efficiency of the power cycle has been done for operating parameters such as LiBr concentration and the generator temperature. This technique will be helpful to choose an optimised operating parameter for designing the power cycle for practical applications. For APC, the highest thermal efficiency is 19.91% and for RHAPC, it is 29.5%. Economic analysis has been performed for APC and RHAPC operating at optimised operating conditions.

GRAPHICAL ABSTRACT

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

P. Rahul thanks the University Grants Commission India for providing financial assistance during the research work.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 188.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.