200
Views
8
CrossRef citations to date
0
Altmetric
Original Article

Split-step double balanced approximation methods for stiff stochastic differential equations

ORCID Icon & ORCID Icon
Pages 1030-1047 | Received 13 Nov 2017, Accepted 17 May 2018, Published online: 07 Jun 2018
 

ABSTRACT

In the modelling of many important problems in science and engineering we face stiff stochastic differential equations (SDEs). In this paper, a new class of split-step double balanced (SSDB) approximation methods is constructed for numerically solving systems of stiff Itô SDEs with multi-dimensional noise. In these methods, an appropriate control function has been used twice to improve the stability properties. Under global Lipschitz conditions, convergence with order one in the mean-square sense is established. Also, the mean-square stability (MS-stability) properties of the SSDB methods have been analysed for a one-dimensional linear SDE with multiplicative noise. Therefore, the MS-stability functions of SSDB methods are determined and in some special cases, their regions of MS-stability have been compared to the stability region of the original equation. Finally, simulation results confirm that the proposed methods are efficient with respect to accuracy and computational cost.

2010 AMS Subject Classifications:

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,129.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.