106
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Convergence analysis of a novel fractional product integration method for solving the second kind weakly singular Volterra integral equations with non-smooth solutions based on Jacobi polynomials

, & ORCID Icon
Pages 1794-1808 | Received 05 May 2022, Accepted 28 Apr 2023, Published online: 12 Jun 2023
 

Abstract

In this paper, we introduce a new fractional basis function based on Lagrange polynomials. We define the new interpolation formula for approximation of the solutions of the second kind weakly singular Volterra integral equations. The product integration method is used for the numerical solution of these equations based on Jacobi polynomials. It is known that the weakly singular Volterra integral equations typically have solutions whose derivatives are unbounded at the left end-point of the interval of integration. We use the suitable transformations to overcome this non-smooth behaviour. An upper error bound of the proposed method is determined and the convergence analysis is discussed. Finally, some numerical examples with non-smooth solutions are prepared to test the efficiency and accuracy of the method.

Mathematics subject classifications [2020]:

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,129.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.