3,334
Views
110
CrossRef citations to date
0
Altmetric
Original Articles

FORCES NLP: an efficient implementation of interior-point methods for multistage nonlinear nonconvex programs

, , &
Pages 13-29 | Received 30 Jun 2016, Accepted 02 Apr 2017, Published online: 22 May 2017
 

ABSTRACT

Real-time implementation of optimisation-based control and trajectory planning can be very challenging for nonlinear systems. As a result, if an implementation based on a fixed linearisation is not suitable, the nonlinear problems are typically locally approximated online, in order to leverage the speed and robustness of embedded solvers for convex quadratic programs (QP) developed during the last decade. The purpose of this paper is to demonstrate that, using simple standard building blocks from nonlinear programming, combined with a structure-exploiting linear system solver, it is possible to achieve computation times in the range typical of solvers for QPs, while retaining nonlinearities and solving the nonlinear programs (NLP) to local optimality. The implemented algorithm is an interior-point method with approximate Hessians and adaptive barrier rules, and is provided as an extension to the C code generator FORCES. Three detailed examples are provided that illustrate a significant improvement in control performance when solving NLPs, with computation times that are comparable with those achieved by fast approximate schemes and up to an order of magnitude faster than the state-of-the-art interior-point solver IPOPT.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,709.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.