392
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Bellman's principle of optimality and deep reinforcement learning for time-varying tasks

ORCID Icon & ORCID Icon
Pages 2448-2459 | Received 04 Oct 2020, Accepted 01 Apr 2021, Published online: 16 Apr 2021
 

ABSTRACT

This paper presents the first framework (up to the authors' knowledge) to address time-varying objectives in finite-horizon Deep Reinforcement Learning (DeepRL), based on a switching control solution developed on the ground of Bellman's principle of optimality. By augmenting the state space of the system with information on its visit time, the DeepRL agent is able to solve problems in which its task dynamically changes within the same episode. To address the scalability problems caused by the state space augmentation, we propose a procedure to partition the episode length to define separate sub-problems that are then solved by specialised DeepRL agents. Contrary to standard solutions, with the proposed approach the DeepRL agents correctly estimate the value function at each time-step and are hence able to solve time-varying tasks. Numerical simulations validate the approach in a classic RL environment.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,709.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.