232
Views
5
CrossRef citations to date
0
Altmetric
Articles

Joint channel estimation and turbo equalisation for MIMO-OFDM-IM systems

, ORCID Icon, &
Pages 721-740 | Received 18 Oct 2017, Accepted 25 Nov 2018, Published online: 10 Dec 2018
 

ABSTRACT

Multiple-Input Multiple-Output (MIMO) communications are frequently employed to improve the transmitted data rate and the link quality. Index modulated orthogonal frequency division multiplexing (OFDM-IM) improves the error rate performance and the peak-to-average power ratio (PAPR) compared with those of the conventional OFDM system due to the activation of partial subcarriers. The MIMO OFDM-IM can transmit additional information bits via the indices of active subcarriers. Also, in order to reduce the transmission power of the OFDM system, the MIMO OFDM-IM scheme can be employed to approach the demanded data transmission rate and the error rate performance. Multiple-input multiple-output orthogonal frequency division multiplexing  index modulation (MIMO-OFDM-IM) is an effective multicarrier transmission scheme and can be proposed as an alternative to conventional MIMO-OFDM system. In this scheme, OFDM-IM is combined with MIMO transmission to take the benefits of these two techniques. In this paper, we propose a joint channel estimation and turbo equalisation receiver for MIMO-OFDM-IM system. Some simulation examples are given to demonstrate the effectiveness of the proposed receiver.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 702.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.