286
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

High expression of RFX4 is associated with tumor progression and poor prognosis in patients with glioblastoma

, , , , &
Pages 7-14 | Received 28 Aug 2019, Accepted 05 Feb 2020, Published online: 02 Mar 2020
 

Abstract

Aim: Glioma stem cells (GSCs) have been shown to contribute to tumor development and recurrence, therapeutic resistance, and cellular heterogeneity of glioblastoma multiforme (GBM). Recently, it has been reported that GSCs lose their self-renewal ability and tumorigenic potential upon differentiation. In this study, we identified Regulatory Factor X4 (RFX4) gene to regulate GSCs’ survival and self-renewal activity in the GBM patients samples.

Materials and methods: We utilized public datasets from the Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), Ivy Glioblastoma Atlas Project, and The Human Protein Atlas to screen candidate genes which are associated with the development of GBM and poor patients survival. Small hairpin RNA (shRNA) lentivirus was applied to knockdown RFX4 gene in GSCs.

Results: We found that RFX4 mRNA expression among the RFX family was particularly reduced during GSC differentiation. RT-qPCR analysis revealed significant downregulation of RFX4 and stem cell markers (CD15 and CD133) mRNA expressions in primary human GBM-derived GSCs cultured under serum condition. Consistently, GSCs showed significantly elevated RFX4 mRNA expression levels compared to normal astrocytes, NHA, whereas glioma cells did not. Furthermore, analysis of the TCGA data set revealed that RFX4 is highly expressed in GBM, and contributes to the lowering of patient survival. Depletion of RFX4 using shRNA lentivirus in patient GBM-derived GSCs decreased neurosphere formation and cell viability.

Conclusion: These results suggest that RFX4 is a potential risk factor for maintaining the stemness of GSCs and making glioma more malignant, and thus, could be a promising target of GBM treatment.

Acknowledgements

We thank the members of the Kim's laboratory for their discussions and help.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2016R1D1A1B03931941 and NRF-2019R1I1A1A01060288) and Korea Basic Science Institute (T39664).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,997.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.