451
Views
13
CrossRef citations to date
0
Altmetric
Conference ICPR 2017

Why do nonlinearities matter? The repercussions of linear assumptions on the dynamic behaviour of assemble-to-order systems

& ORCID Icon
Pages 6424-6451 | Received 23 May 2018, Accepted 27 Nov 2018, Published online: 22 Jan 2019
 

Abstract

The hybrid assembly-to-order (ATO) supply chain, combining make-to-stock and make-to-order (MTS-MTO) production, separated by a customer order decoupling point (CODP), is well recognised in many sectors. Based on the well-established Inventory and Order Based Production Control Systems (the IOBPCS family), we develop a hybrid ATO system dynamics model and analytically study the impact of nonlinearities on its dynamic performance. Nonlinearities play an important, sometimes even a dominant, role in influencing the dynamic performance of supply chain systems. However, most IOBPCS based analytical studies assume supply chain systems are completely linear and thereby greatly limit the applicability of published results, making it difficult to fully explain and describe oscillations caused by internal factors. We address this gap by analytically exploring the non-negative order and capacity constraint nonlinearities present in an ATO system. By adopting nonlinear control engineering and simulation approaches, we reveal that, depending on the mean and amplitude of the demand, the non-negative order and capacity constraints in the ATO system may occur and their significant impact on system dynamics performance should be carefully considered. Failing to monitor non-negative order constraints may underestimate the mean level of inventory and overestimate the inventory recovery speed. Sub-assemblers may suffer increased inventory cost (i.e. the consequence of varying inventory levels and recovery speed) if capacity and non-negative order constraints are not considered at their production site. Future research should consider the optimal trade-off design between CODP inventory and capacity and the exploration of delivery lead-time dynamics.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 973.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.