83
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Output tracking control design with anti-disturbance rejection for modified repetitive nonlinear control systems

ORCID Icon, ORCID Icon, ORCID Icon &
Pages 2999-3012 | Received 15 Jul 2022, Accepted 02 Oct 2023, Published online: 27 Oct 2023
 

ABSTRACT

This paper intends to analyse the disturbance rejection and output tracking control for a class of nonlinear control systems with disturbances. In this connection, we present a method that combines a proportional-integral observer and nonlinear-equivalent-input-disturbance estimator for superior disturbance rejection performance. Specifically, the nonlinear-equivalent-input-disturbance estimator comprises of equivalent-input-disturbance estimator and nonlinear feedback term, which is employed to estimate and reject the disturbances from the nonlinear system. Notably, the proportional-integral loop in the proportional-integral observer reduces the estimation inaccuracy of the nonlinear-equivalent-input-disturbance. Then the estimated disturbance is intertwined into the repetitive control input to compensate it efficiently. In order to obtain the required results, the proposed control system is converted into a two-dimensional modified repetitive control system to describe the learning and control actions. In particular, the proposed controller enables to adjust the gains directly to improve the learning and control performance and as a result, the tracking accuracy increases. Using a general Lyapunov–Krasovskii functional, singular value decomposition technique and linear matrix inequalities approach, a design algorithm for establishing proportional-integral observer and feedback gains is developed for the system under consideration. Finally, simulation results are given to illustrate the developed method's validity and superiority.

Data availability statement

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,413.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.