345
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Surface effect in nanoscale adhesive contact

, , &
Pages 380-398 | Received 18 Jul 2019, Accepted 23 Aug 2019, Published online: 05 Sep 2019
 

ABSTRACT

Using the well-known Lennard–Jones potential and a recently proposed surface energy density-based elastic theory, we analyze the adhesive contact behavior between a rigid spherical nano-indenter and an elastic half-space in this paper. With the help of Newton’s method of iterations and arc-length continuation algorithm, both contact pressure and normal displacement at the indented surface are obtained numerically, based on which the load–approach curves are further achieved. It is found that the surface effect could be characterized by only one intrinsic length, i.e., the ratio of bulk surface energy density to shear modulus of the indented material. Comparison of the results with or without surface effect shows that the surface effect leads to a smaller pull-off force. Moreover, for the case of a zero-external loading, the corresponding approaches become smaller than the classical predictions, which qualitatively agree with the existing experimental findings. This indicates the elastic substrate becomes hardened due to the surface effect. All the study should have contributions to the deep understanding of surface effect on nanoscale adhesive contact behaviors.

Additional information

Funding

The work reported here is supported by NSFC through Grants (No. 11532013, No. 11872114, No. 11772333) and the Project of State Key Laboratory of Explosion Science and Technology (No. ZDKT17-02).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 868.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.