93
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Assessing the effect of a thickness gradient on the shear stress profile at the epoxy/silicone interface of thin coatings subjected to transverse shear loads with finite element analyses

, & ORCID Icon
Pages 2222-2237 | Received 26 Sep 2022, Accepted 10 Feb 2023, Published online: 22 Feb 2023
 

ABSTRACT

Low surface energy materials are used as foul-release coatings (FRCs) to reduce the forces required to remove biofouling. Previous experiments observed the release behavior of epoxy studs (pseudobarnacles) from silicone coatings with a thickness gradient. The studs were loaded transversely in thick-to-thin and thin-to-thick directions, and the final decohesion always proceeded from the thin to the thick side of the coating. However, trends in the critical transverse forces required for removal were not apparent. In this study, finite element models (FEMs) were created to determine the peak shear stress at the interface of an epoxy stud bonded to a silicone coating with a thickness gradient in response to a transverse load. The effects of the average coating thickness, the thickness gradient of the coating, and the transverse loading direction were determined. At a given average coating thickness, increasing the thickness gradient produced higher peak shear stresses at the interface, which would reduce the critical force required to remove the epoxy stud (i.e., would improve the performance of the FRC). The influence of the increased thickness gradient waned as the average coating thickness increased. Therefore, moderately thin coatings with large thickness gradients would be optimal for FRC performance under transverse loading.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

The author(s) reported there is no funding associated with the work featured in this article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 868.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.