67
Views
1
CrossRef citations to date
0
Altmetric
Original Article

Adhesion property of municipal solid waste incinerator bottom ash and limestone with asphalt based on surface energy theory

, , , , &
Pages 923-946 | Received 19 Jul 2023, Accepted 02 Nov 2023, Published online: 08 Nov 2023
 

ABSTRACT

The aim of this paper is to investigate the adhesion of municipal solid waste incinerator bottom ash (MSWIBA) and limestone to asphalt using the principles of surface energy theory. MSWIBA asphalt mixes are known for their satisfactory water stability, with adhesion being a crucial factor, as demonstrated in previous freeze-thaw splitting tests. Contact angles of ground MSWIBA and limestone were measured using a capillary rise test, eliminating the influence of material surface structure. Subsequently, adhesion work and spalling work were calculated to correlate with water-induced damage. The results showed that the sequence of adhesion work was fine MSWIBA > limestone > coarse MSWIBA, while the sequence of spalling work was coarse MSWIBA > limestone > fine MSWIBA. The adhesion of MSWIBA asphalt mixes was evaluated using the water boiling test image method to validate the findings of surface energy theory. In both asphalt tests, the spalling rate followed this sequence: coarse MSWIBA > limestone > fine MSWIBA. The Adhesion index ER ranked as follows: ER Fine MSWIBA > ER limestone > ER coarse MSWIBA. These results suggest that the water stability of MSWIBA asphalt mixes is influenced by the surface energy of the components. Consequently, indices derived from surface energy theory can be applied in formulating and predicting the properties of MSWIBA asphalt mixes.

Acknowledgments

The research was financially supported by the National Natural Science Foundation of China (52008069) and Beijing Postdoctoral Research Foundation(2022-zz-054). The views in the paper only reflect those from the authors and may not necessarily reflect the views from the sponsors.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

The research was financially supported by the National Natural Science Foundation of China (52008069) and Beijing Postdoctoral Research Foundation (2022-zz-054). The views in the paper only reflect those from the authors and may not necessarily reflect the views from the sponsors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 868.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.