183
Views
0
CrossRef citations to date
0
Altmetric
Research paper

Effects of bed obstacles on the behaviour of inclined dense jets

, , &
Pages 196-210 | Received 25 Dec 2021, Accepted 02 Feb 2023, Published online: 04 May 2023
 

ABSTRACT

Coral reefs around the discharge areas of desalination plants have effects on the distribution and dilution of discharged saline jet. In the present study, effects of bed obstacles with different heights on the behaviour of inclined negatively buoyant jets (INBJs), including dilution and spatial characteristics, are experimentally investigated using the light attenuation (LA) optical method. Present experiments show that as the confinement induced by the bed and obstacle intensifies, the maximum normalized jet centreline dilution decreases up to 40%. As the jet approaches the obstacle, spreading along the inner and outer edges of the jet increases. The present results also show that upstream of the maximum height point, the jet is not considerably sensitive to the bed obstacle since the momentum dominates the jet behaviour. However, the jet dilution in regions downstream the maximum height point reduces when the obstacle is present.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Supplemental data

Supplemental data for this article can be accessed 10.1080/00221686.2023.2180442.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 203.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.