261
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Local Dynamic Stability of the Locomotion of Lower Extremity Joints and Trunk During Backward Upslope Walking

, , &
Pages 587-599 | Received 26 Oct 2017, Accepted 01 Oct 2018, Published online: 07 Dec 2018
 

Abstract

Backward slope walking was considered as a practical rehabilitation and training skill. However, its gait stability has been hardly studied, resulting in its limited application as a rehabilitation tool. In this study, the effect of walking direction and slope grade were investigated on the local dynamic stability of the motion of lower extremity joints and trunk segment during backward and forward upslope walking (BUW/FUW). The local divergence exponents (λS) of 16 adults were calculated during their BUW and FUW at grades of 0%, 5%, 10%, and 15%. Mean standard deviation over strides (MeanSD) was analyzed as their gait variability. Backward walking showed larger λS for the abduction-adduction and rotational angles of knee and ankle on inclined surface than forward walking, while λS for hip flexion-extension angle at steeper grades was opposite. No grade effect for any joint existed during BUW, while λS increased with the increasing grade during FUW. As to the trunk, walking direction did little impact on λS. Still, significant larger λS for its medial-lateral and vertical motion were found at the steeper grades during both FUW and BUW. Results indicate that during BUW, the backward direction may influence the stability of joint motions, while the trunk stability was challenged by the increasing grades. Therefore, BUW may be a training tool for the stability of both upper and lower body motion during gait.

Disclosure Statement

The authors report no conflicts of interest.

Additional information

Funding

This study was supported by the National Nature Science Foundation of China (grant no. 31170901) and Key Technology Support Project of Shanghai Municipal Science and Technology Commission (grant no. 16441908200 and 13441902900).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 53.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 162.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.