290
Views
1
CrossRef citations to date
0
Altmetric
Genomics

Gene expression of the white-rot fungus Lenzites gibbosa during wood degradation

ORCID Icon & ORCID Icon
Pages 841-856 | Received 06 Oct 2020, Accepted 27 Apr 2022, Published online: 14 Jul 2022
 

ABSTRACT

To determine the wood degradation mechanism and its key genes and biological processes of Lenzites gibbosa, we sequenced 15 transcriptomes of mycelial samples under woody environment at 3, 5, 7, and 11 d (D3, D5, D7, and D11) and nonwoody environment (control). All the transcripts were annotated as much as possible in eight databases to determine their function. The key genes and biological processes relating to wood degradation were predicted and screened. The expression of 11 key genes during wood degradation after 5 d of sawdust treatment was detected by quantitative polymerase chain reaction (PCR). A total of 2069 differentially expressed genes (DEGs) were obtained in 10 differential groups. Comparing wood with nonwood treatment condition, the key genes were those participating in oxidation-reduction process, they were oxidoreductase and peroxidase genes and their regulator genes; these genes mainly focused on the three biological processes of carbohydrate metabolism, lignin catabolism, and secondary metabolite biosynthesis, transport, and catabolism. The mostly enriched subcategories in molecular function were oxidoreductase activity, peroxidase activity, and heme binding in Gene Ontology (GO) annotation. One cellulose and hemicellulose degradation pathway and seven pathways related to lignin-derived aromatic compound degradation or the later degradation of lignin were found. In conclusion, during the process of L. gibbosa growing on wood, gene expression at the transcriptional level indicated that lignin catabolism and hyphal growth were promoted, but the metabolism of carbon and carbohydrates including cellulose in lignocellulose in overall trend was inhibited to some extent. The results have important reference value for the study of degradation mechanism of wood white rot.

ACKNOWLEDGMENTS

Transcriptome sequence and some analyses were performed using BMKCloud (www.biocloud.net), which is gratefully acknowledged.

SUPPLEMENTARY MATERIAL

Supplemental data for this article can be accessed on the publisher’s Web site.

Disclosure Statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This work was financially supported by a grant from Natural Science Foundation of Heilongjiang Province (2016006).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 122.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.