289
Views
3
CrossRef citations to date
0
Altmetric
Technical Papers

Stress Profile in Coating Layers of TRISO Fuel Particles in Contact with One Another

ORCID Icon & ORCID Icon
Pages 1349-1360 | Received 24 Jan 2022, Accepted 06 Jun 2022, Published online: 05 Aug 2022
 

Abstract

This work presents a discussion on a series of finite element analyses that assess stress evolution in the coating layers of tristructural isotropic (TRISO) particles in contact with each other while embedded in a matrix. The initial simulations were of applied uniaxial pressure versus matrix elastic modulus. These simulations predicted increasing stress in the silicon carbide coating layers of the TRISO particles with decreasing matrix elastic modulus. The second set of simulations focused on the effects of heating and cooling and the associated dimensional change on the state of stress in the coating layers. The general finding was that there was no significant difference below the coating layer’s deposition temperature. However, above the deposition temperature, the contacting particles had higher stress compared with those that were separated. The third set of simulations focused on the effects of irradiation, specifically, creep, dimensional change, and swelling. An interface debonding model was introduced since these potential effects have a significant bearing on predicted stresses.

Acknowledgments

Tyler Gerczak, Nathan Capps, and Andrew Nelson provided valuable comments on the paper. The authors acknowledge the high-performance computing resources made available for this work at Idaho National Laboratory. This research was supported by the Transformational Challenge Reactor program, U.S. Department of Energy (DOE), Office of Nuclear Energy.

This manuscript has been authored by UT-Battelle, LLC under contract no. DE-AC05-00OR22725 with the DOE. The U.S. government retains and the publisher, by accepting the paper for publication, acknowledges that the U.S. government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for U.S. government purposes. The DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

Disclosure Statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 409.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.