144
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Estimation of Near-Field and Far-Field Post-Accident Atmospheric Dispersion for Microreactors

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 2099-2116 | Received 30 Sep 2022, Accepted 14 Apr 2023, Published online: 05 Jun 2023
 

Abstract

The current study describes a simulation-based analysis of the atmospheric dispersion of radionuclide fission product particles in the near-field and far-field of a generic, conceptual microreactor, which is a small nuclear reactor with a power output typically ranging from 1 to 20 MW(thermal) and generally lower than 50 MW(electric). The near-field is a distance of up to 100 m from the microreactor while the far-field is a distance of 300 m or beyond from the microreactor. The generic microreactor operates at a pressure close to the ambient pressure. Therefore, in the event of a postulated accident that causes the leakage of radionuclide particles from the microreactor containment into the environment, the radionuclide particles are unlikely to travel too far from the reactor, as opposed to conventional nuclear reactors. The current paper provides estimates of average and 95th-percentile values of the normalized effluent concentration of the atmospheric radionuclide particle dispersion with respect to the source strength in the near-field and far-field of the conceptual microreactor. The computer code Atmospheric Relative CONcentrations in Building Wakes (ARCON96) was used to perform all simulations for the current study. It was observed that the 95th-percentile values of the normalized effluent concentration decrease by an order of magnitude as the receptor distance increases, i.e., from the near-field to the far-field. The dispersed aerosol concentration also decreases with time. A parametric study was performed to understand which input parameters affect the normalized effluent concentration values the most, and a definitive screening design was employed for this purpose. The atmospheric stability class and the distance between the reactor and the receptor were the parameters found to affect the aerosol dispersion characteristics by the greatest extent. The study recommends that the computer code RADTRAD (Radionuclide Transport and Removal And Dose Estimation) be used to estimate the actual dosage over distance using the outputs from ARCON96 as inputs, along with reactor-specific core inventories.

Disclosure Statement

No potential conflict of interest was reported by the author(s).

Notes

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 409.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.