132
Views
0
CrossRef citations to date
0
Altmetric
Articles

DFT study on Raman frequencies of molten lead (II) chloride

ORCID Icon &
Pages 423-431 | Received 04 Feb 2018, Accepted 12 May 2018, Published online: 21 May 2018
 

ABSTRACT

The study concerns ab inito calculations of the essential Raman frequencies of molten lead (II) chloride near the melting point. Modelling of topologically disordered lead (II) chloride was carried out within the framework of the density functional theory using the Perdew–Burke-Ernzerhof (PBE) functional and optimised basis sets. Calculations were performed for a cluster containing 24 formula units. The optimum geometry of the cluster was determined and the local structure parameters were found. Nano-size effect leads to the picture of damped oscillations on radial atomic density distributions typical of molten salts. Distorted octahedra of PbCl6 were detected inside the cluster. Ab initio calculation of the Raman spectrum of the octahedral complexes inside the cluster structure was implemented. It was shown that the spectrum has a peak at 192 cm−1, which agrees well with the experimental Raman spectra of lead (II) chloride melt near the melting point.

Acknowledgements

The authors are appreciative to head of analytical laboratory of Institute of Metallurgy UB RAS K. Shunyaev for providing access to the scientific software.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,616.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.