280
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Establishment of the prediction model and biological mechanism exploration for secondary imatinib-resistant in gastrointestinal stromal tumor

, , , &
Pages 1334-1343 | Received 29 Jan 2022, Accepted 03 Jun 2022, Published online: 18 Jun 2022
 

Abstract

A gastrointestinal stromal tumor (GIST) is mostly driven by the auto-activated, mutant KIT receptor tyrosine kinase gene or by the platelet-derived growth factor receptor alpha. Inhibition of KIT-signaling is the primary molecular target therapy for GIST, which is performed by the drug imatinib clinically. However, more than half of advanced or metastatic GIST develop secondary resistance to imatinib within 2 years after initiation of treatment, and the mechanism of acquired imatinib-resistant in GIST remains unclear. Therefore, we designed the present study, and firstly analyzed the gene expression profile of imatinib-resistant and sensitive GIST from GEO DataSet and identified 44 differential expressed genes. Then, a model including nine genes with their expressed coefficients was identified as a risk score to predict imatinib-resistant GIST. Internal and external validation of the prediction model was performed through the ROC curve, and the area under the curve was 0.967 (95%CI 0.901–1.000) and 0.917 (95%CI 0.753–1.000), separately. Lastly, the effect of immune, m6A, pyroptosis, and ferroptosis-related genes on imatinib-resistant GIST was also assessed because DNA replication was the most enriched biological function of DEGs after functional annotation, pathway enrichment, and protein-protein interaction network analyses. In conclusion, the present study established a novel model to predict secondary imatinib-resistant GIST. Meanwhile, the bioinformatic mining results provided potential and promising targets for imatinib-resistant therapy.

Disclosure statement

All authors declare that they have no competing interests.

Additional information

Funding

This work was supported by the Peking University People’s Hospital Scientific Research Development Funds (RDY2019-27).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 336.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.