146
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Lysine acetyltransferase KAT2A modulates ferroptosis during colorectal cancer development

, , , , , & show all
Pages 437-444 | Received 20 Oct 2023, Accepted 30 Dec 2023, Published online: 23 Jan 2024
 

Abstract

Background

Histone modifications, especially the lysine acetylation, have drawn increasing attention in cancer research area. The aim of this research is to explore the molecular mechanisms underlying the regulation of lysine acetyltransferase 2 A (KAT2A) on colorectal cancer (CRC).

Methods

Clinical samples were collected from patients with CRC. The expression and correlation between KAT2A and ferroptosis suppressor SLC7A11 and glutathione peroxidase 4 (GPX4) were measured by qPCR and Pearson correlation analysis. NCP cells were transfected with KAT2A overexpression vectors or siRNAs. The proliferation of cells was measured by CCK-8 and colony formation assay. Cell migration and invasion was analyzed by Transwell. The accumulation of lipid peroxidation, ferrous iron, and malondialdehyde (MDA) were analyzed to determine cell ferroptosis. The expression of cell metastasis biomarkers was measured by western blotting assay. Interaction between KAT2A with GPX4 gene was measured by chromatin immunoprecipitation (ChIP).

Results

The KAT2A, GPX4, and SLC7A11 expression was notably elevated in tumor tissues compared with the paired non-tumor tissues from CRC patients. The expression of KAT2A showed positive correlation with GPX4 and SLC7A11. Overexpression of KAT2A recovered the cell proliferation, migration, and invasion of CRC cells that suppressed by ferroptosis inducer erastin, along with deceased levels of ROS, iron, Fe2+, and MDA. Overexpression of KAT2A suppressed E-cadherin level and increased N-cadherin, Snail, and Vimentin expression in CRC cells. KAT2A interacted with GPX4 promoter region.

Conclusions

In conclusion, our findings demonstrated that KAT2A modulates the histone acetylation of GPX4 to regulate proliferation, metastasis, and ferroptosis of CRC cells.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

The author(s) reported there is no funding associated with the work featured in this article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 336.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.