Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 53, 2023 - Issue 1
198
Views
0
CrossRef citations to date
0
Altmetric
General Xenobiochemistry

In vitro hepatic metabolism of the natural product quebecol

&
Pages 1-11 | Received 16 Dec 2022, Accepted 11 Feb 2023, Published online: 18 Apr 2023
 

Abstract

  1. Quebecol (2,3,3-tri-(3-methoxy-4-hydroxyphenyl)-1-propanol) is a polyphenolic compound, which is formed during maple syrup production from Acer spp. Quebecol bears structural similarities to the chemotherapy drug tamoxifen, which has led to synthesis of structural analogues and investigations into their pharmacological properties, however there are no reports on the hepatic metabolism of quebecol.

  2. This interest in therapeutic properties spurred us to investigate the in vitro microsomal Phase I and II metabolism of quebecol. We were unable to detect any P450 metabolites for quebecol in either human liver microsomes (HLM) or rat liver microsomes (RLM). In contrast we observed marked formation of three glucuronide metabolites in both RLM and HLM, suggesting that clearance via Phase II pathways is likely to predominate.

  3. To further understand the hepatic contribution to first-pass glucuronidation we have validated an HPLC method following FDA and EMA guidelines (selectivity, linearity, accuracy, and precision) to quantify quebecol in microsomes. In vitro enzyme kinetics were performed for quebecol glucuronidation by HLM including 8 concentrations from 5–30 µM. We determined a Michaelis-Menten constant (KM) of 5.1 µM, intrinsic clearance (Clint,u) of 0.038 ± 0.001 mL/min/mg, and maximum velocity (Vmax) of 0.22 ± 0.01 µmol/min/mg.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

GdS is the recipient of a University of Saskatchewan, College of Graduate and Postdoctoral Studies Dean’s Scholarship. This work was funded by a Natural Sciences and Engineering Research Council of Canada Discovery Grant [NSERC DG #165912].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 897.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.