230
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Biocorrosion inhibition of mild steel in crude oil-water environment using extracts of Musa paradisiaca peels, Moringa oleifera leaves, and Carica papaya peels as biocidal-green inhibitors: kinetics and adsorption studies

, , &
Pages 98-124 | Received 29 Mar 2017, Accepted 11 May 2018, Published online: 21 Jun 2018
 

Abstract

Biocorrosion inhibition of mild steel in the crude oil-water environment was investigated in the absence and presence of Carica papaya peel extract, Musa paradisiaca peel extract, and Moringa oleifera leaf extract as potential biocidal-green inhibitors using gravimetric, polarization, and surface analysis (Inverted metallurgical microscope and Fourier transform infra-red spectroscopy) methods. Kinetics and adsorption behaviors of the extracts were determined and evaluated. Results revealed that each of the extracts functioned as biocidal-green inhibitors in the crude oil-water environment and that biocorrosion inhibition efficiency (IE%) of each extract increased with increase in extract concentration and exposure time. Maximum IE% of 97.7, 96.5, and 99.2% was achieved with Musa paradisiaca peel extract, Moringa oleifera leaf extract, and Carica papaya peel extract, respectively, at 4000 mg/l extract concentration and 35 d exposure time. Polarization studies indicated that each of the extracts acts as a mixed-type inhibitor. Mild steel susceptibility to biocorrosion was significantly reduced by each of the extracts through biofilm development suppression and extract adsorption onto the mild steel surface which obeyed Langmuir, Freundlich, Temkin, and Flory-Huggins isotherm models. Kinetics of mild steel biocorrosion inhibition followed a Monod form of kinetics (Type A). Gibbs free energy of adsorption values for Musa paradisiaca peel extract (−9.65 kJ/mol), Moringa oleifera leaf extract (−9.57 kJ/mol), and Carica papaya peel extract (−9.71 kJ/mol) showed that each extract adsorption was spontaneous and of physical adsorption.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,086.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.