249
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Evolution mechanism of active groups and thermal effects of Chinese lignite in low-temperature oxidation

, , , , , & show all
Pages 861-870 | Published online: 28 Jun 2019
 

Abstract

The evolution of active groups at low temperature was examined using Chinese lignite by infrared technology and X-ray photoelectron spectroscopy (XPS). The results showed that the hydroxyl, aliphatic ether, methylene, and methyl groups played important roles in the low-temperature oxidation of lignite below 200 °C. Carbonyl and carboxyl groups were important intermediates. Thus, a multi-step evolution mechanism involving the hydroxyl, aliphatic ether groups, and alkane was reasoned to describe the low-temperature oxidation of lignite. In addition, according to the oxidation kinetics experiment and the evolution laws of the active groups, the ratios of the reaction lines were determined considering the accuracy of thermal effects. The thermal effects and the heat release intensities of each temperature interval were obtained based on the evolution mechanism and the reaction ratios. The shortest spontaneous combustion period of lignite was calculated and compared with the experimental value, which proved that the reasoned evolution mechanism of the active groups and the calculations of the thermal effects were reliable.

Additional information

Funding

This work is supported by the Fundamental Research Funds for the Central Universities (No. 2017XKQY067).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,086.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.