262
Views
6
CrossRef citations to date
0
Altmetric
Reviews

Development of nanoparticles for pharmaceutical preparations using supercritical techniques

ORCID Icon, , , , , , , & show all
Pages 1642-1663 | Published online: 08 Apr 2022
 

Abstract

This review focuses on nanoparticle (NP) synthesis and particle size design using supercritical fluid (SCF) technology for pharmaceutical formulations. SCF technology is seen as a pioneering step forward in particle size design, and also plays a critical role in addressing the problem of residual solvents in pharmaceutical and biomedical research. In SCF technology, one of the most important components is environmentally friendly supercritical CO2 (scCO2) fluid, which is very common and cost-effective because nontoxic green technology is used for the formation of nanomedicine in drug delivery. In the case of pharmaceutical science, numerous complex procedures are required in order to manufacture NPs. The working principles of the rapid expansion of supercritical solutions (RESS), supercritical antisolvent (SAS), supercritical fluid extraction of emulsions (SFEE), solution-enhanced dispersion by supercritical fluids (SEDS), rapid expansion of supercritical solution into a liquid solvent (RESOLV), and particles from gas-saturated solution (PGSS) are widely used throughout the industry. Most of the supercritical (SC) approaches (total 23 methods) including the newly established methods are cited in this manuscript. This study offers a detailed overview of fundamental principles and relevant roles, advantages, and difficulties in the creation of SCF methods for the formation of NPs. It gives the clear concept to select the proper method, solvent, active ingredients, and polymers in NP preparation.

Conflicts of interest

No potential conflict of interest.

Additional information

Funding

This work was carried out at the Faculty of Pharmacy, International Islamic University Malaysia funded by the fundamental research grant scheme (FRGS, Grant No. FRGS19-002-0610).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,086.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.