167
Views
5
CrossRef citations to date
0
Altmetric
Articles

Hyperspectral image classification using a spectral–spatial random walker method

Pages 3948-3967 | Received 15 Jun 2018, Accepted 22 Sep 2018, Published online: 06 Dec 2018
 

ABSTRACT

This article proposes a spectral–spatial method for classification of hyperspectral images (HSIs) by modifying traditional random walker (RW). The proposed method consists of suggesting two main modifications. First, to construct a spatial edge weighting function, low-frequency edge weighting function is proposed. In this function, the detail weights are removed. Second, to enhance the classification accuracy, a fusion of spectral and spatial Laplacian matrix in RW is suggested. This fusion can improve the classification performances compared to traditional RW using only spatial Laplacian matrix. In comparison with some of the state-of-the-art RW and spectral–spatial classifier methods, the experimental results of the proposed method (spectral–spatial RW) show that the proposed method significantly increases the classification accuracy of HSI.

Acknowledgements

The author would like to thank Prof. P. Gamba from the University of Pavia, Pavia, Italy, for providing the Pavia dataset and the referee committee members of the International Journal Of Remote Sensing for their constructive, pertinent, and invaluable comments/suggestions.

Disclosure statement

No potential conflict of interest was reported by the author.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 689.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.