69
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Conflicting actions of 4-vinylcatechol in rat lymphocytes under oxidative stress induced by hydrogen peroxide

, , , , ORCID Icon & ORCID Icon
Pages 347-352 | Received 05 Mar 2018, Accepted 20 Jun 2018, Published online: 06 Aug 2018
 

Abstract

4-Vinylcatechol (4VC) has been identified as an aroma compound in roasted foods, especially coffee. It is also a component in traditional herbal medicines. This compound may be subconsciously ingested through foods and herbs. Recent experimental evidence has shown that 4VC possesses an antioxidative action. However, the antioxidative action of 4VC at cellular levels is not well characterized. The effects of 4VC (0.1–100 µM) were examined on rat thymic lymphocytes without and with oxidative stress induced by 300 µM hydrogen peroxide (H2O2). Cell treatment with 100 µM 4VC alone for 4 h significantly increased the population of dead cells. Thus, 4VC at 100 µM or above elicits cytotoxicity. However, 4VC at sublethal concentrations (1–10 µM) significantly attenuated the H2O2-induced increase in cell lethality in a concentration-dependent manner. While application of 10 µM 4VC slowed the process of cell death induced by H2O2, 4VC did not antagonize the H2O2-induced reduction of cellular nonprotein thiols. Although 4VC at 10 µM did not affect intracellular Ca2+ and Zn2+ levels, the agent potentiated the H2O2-induced increases in these levels. These actions of 10 µM 4VC are adverse to the cells under the oxidative stress. However, 10 µM 4VC partly attenuated the cell death induced by 100 nM A23187, a calcium ionophore. There are conflicting actions of 4VC at 1–100 µM on the cells under oxidative stress although the agent is used for an antioxidant. Thus, caution is required when using 4VC as a therapeutic agent.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

Experiments were carried out with a Grant-in-Aid for Scientific Research [C26340039] from the Japan Society for the Promotion of Science (Tokyo, Japan).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,271.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.