175
Views
7
CrossRef citations to date
0
Altmetric
Research Articles

Susceptibility to the acute toxicity of acrylonitrile in streptozotocin-induced diabetic rats: protective effect of phenethyl isothiocyanate, a phytochemical CYP2E1 inhibitor

ORCID Icon, , , , , & show all
Pages 130-139 | Received 25 Oct 2018, Accepted 10 Dec 2018, Published online: 01 Jul 2019
 

Abstract

Diabetes mellitus is a significant global public health issue. The diabetic state not only precipitates chronic disease but also has the potential to change the toxicity of drugs and chemicals. Acrylonitrile (AN) is a potent neurotoxin widely used in industrial products. This study used a streptozotocin (STZ)-induced diabetic rat model to examine the role of cytochrome P450 2E1 (CYP2E1) in acute AN toxicity. The protective effect of phenethyl isothiocyanate (PEITC), a phytochemical inhibitor of CYP2E1, was also investigated. A higher incidence of convulsions and loss of the righting reflex, and decreased rates of survival, as well as elevated CYP2E1 activity, were observed in diabetic rats treated with AN when compared to those in non-diabetic rats, suggesting that diabetes confers susceptibility to the acute toxicity of AN. Pretreatment with PEITC (20–80 mg/kg) followed by AN injection alleviated the acute toxicity of AN in diabetic rats as evidenced by the decreased incidence of convulsions and loss of righting reflex, and increased rates of survival. PEITC pretreatment at 40 and 80 mg/kg decreased hepatic CYP2E1 activity in AN-exposed diabetic rats. PEITC pretreatment (20 mg/kg) increased the glutathione (GSH) content and glutathione S-transferase (GST) activity and further decreased ROS levels in AN-exposed diabetic rats. Collectively, STZ-induced diabetic rats were more sensitive to AN-induced acute toxicity mainly due to CYP2E1 induction, and PEITC pretreatment significantly alleviated the acute toxicity of AN in STZ-induced diabetic rats. PEITC might be considered as a potential effective chemo-preventive agent against AN-induced acute toxicity in individuals with an underlying diabetic condition.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was supported in part by the National Natural Science Foundation of China (81302459) and Research Foundation for Advanced Talents in Jiangsu University (13JDG024).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,271.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.